早教吧作业答案频道 -->其他-->
设a为实数,函数f(x)=x2e1-x-a(x-1)(Ⅰ)求φ(x)=f(x)+a(x-1)的单调递增区间;(Ⅱ)当a=1时,求f(x)在(34,2)上的最大值;(Ⅲ)设函数g(x)=f(x)+a(x-1-e1-x),当g(x)有两
题目详情
设a为实数,函数f(x)=x2e1-x-a(x-1)
(Ⅰ)求φ(x)=f(x)+a(x-1)的单调递增区间;
(Ⅱ)当a=1时,求f(x)在(
,2)上的最大值;
(Ⅲ)设函数g(x)=f(x)+a(x-1-e1-x),当g(x)有两个极值点x1,x2(x1<x2)时,总有x2g(x1)≤λf(x1),求实数λ的值.(f′(x)为f(x)的导函数)
(Ⅰ)求φ(x)=f(x)+a(x-1)的单调递增区间;
(Ⅱ)当a=1时,求f(x)在(
3 |
4 |
(Ⅲ)设函数g(x)=f(x)+a(x-1-e1-x),当g(x)有两个极值点x1,x2(x1<x2)时,总有x2g(x1)≤λf(x1),求实数λ的值.(f′(x)为f(x)的导函数)
▼优质解答
答案和解析
(Ⅰ)∵φ(x)=x2e1-x,
∴φ′(x)=xe1-x(2-x),
令φ′(x)>0,解得:0<x<2,
∴函数φ(x)在(0,2)上单调递增;
(Ⅱ)当a=1时,f(x)=x2e1-x-(x-1),
则f'(x)=(2x-x2)e1-x-1=
,
令h(x)=(2x-x2)-ex-1,则h'(x)=2-2x-ex-1,
显然h'(x)在(
,2)内是减函数,
又因h'(
)=
-
<0,故在(
,2)内,总有h'(x)<0,
∴h(x)在(
,2)上是减函数,
又因h(1)=0,
∴当x∈(
,1)时,h(x)>0,从而f'(x)>0,这时f(x)单调递增,
当x∈(1,2)时,h(x)<0,从而f'(x)<0,这时f(x)单调递减,
∴f(x)在(
,2)的极大值是f(1)=1.
(Ⅲ)由题意可知g(x)=(x2-a)e1-x,则g'(x)=(2x-x2+a)e1-x=(-x2+2x+a)e1-x.
根据题意,方程-x2+2x+a=0有两个不同的实根x1,x2(x1<x2),
∴△=4+4a>0,即a>-1,且x1+x2=2,∵x1<x2,∴x1<1.
由x2g(x1)≤λf′(x1),其中f'(x)=(2x-x2)e1-x-a,
可得(2-x1)(x12-a)e1-x1≤λ[(2x1-x12)e1-x1-a],
注意到-x12+2x1+a=0,
∴上式化为(2-x1)(2x1)e1-x1≤λ[(2x1-x12)e1-x1+(2x1-x12)],
即不等式x1[2e1-x1-λ(e1-x1+1)]≤0对任意的x1∈(-∞,1)恒成立,
(i)当x1=0时,不等式x1[2e1-x1-λ(e1-x1+1)]≤0恒成立,λ∈R;
(ii)当x1∈(0,1)时,2e1-x1-λ(e1-x1+1)≤0恒成立,即λ≥
,
令函数k(x)=
=2-
,显然,k(x)是R上的减函数,
∴当x∈(0,1)时,k(x)<k(0)=
,
∴λ≥
,
(iii)当x1∈(-∞,0)时,2e1-x1-λ(e1-x1+1)≥0恒成立,即λ≤
∴φ′(x)=xe1-x(2-x),
令φ′(x)>0,解得:0<x<2,
∴函数φ(x)在(0,2)上单调递增;
(Ⅱ)当a=1时,f(x)=x2e1-x-(x-1),
则f'(x)=(2x-x2)e1-x-1=
(2x−x2)−ex−1 |
ex−1 |
令h(x)=(2x-x2)-ex-1,则h'(x)=2-2x-ex-1,
显然h'(x)在(
3 |
4 |
又因h'(
3 |
4 |
1 |
2 |
1 | |||
|
3 |
4 |
∴h(x)在(
3 |
4 |
又因h(1)=0,
∴当x∈(
3 |
4 |
当x∈(1,2)时,h(x)<0,从而f'(x)<0,这时f(x)单调递减,
∴f(x)在(
3 |
4 |
(Ⅲ)由题意可知g(x)=(x2-a)e1-x,则g'(x)=(2x-x2+a)e1-x=(-x2+2x+a)e1-x.
根据题意,方程-x2+2x+a=0有两个不同的实根x1,x2(x1<x2),
∴△=4+4a>0,即a>-1,且x1+x2=2,∵x1<x2,∴x1<1.
由x2g(x1)≤λf′(x1),其中f'(x)=(2x-x2)e1-x-a,
可得(2-x1)(x12-a)e1-x1≤λ[(2x1-x12)e1-x1-a],
注意到-x12+2x1+a=0,
∴上式化为(2-x1)(2x1)e1-x1≤λ[(2x1-x12)e1-x1+(2x1-x12)],
即不等式x1[2e1-x1-λ(e1-x1+1)]≤0对任意的x1∈(-∞,1)恒成立,
(i)当x1=0时,不等式x1[2e1-x1-λ(e1-x1+1)]≤0恒成立,λ∈R;
(ii)当x1∈(0,1)时,2e1-x1-λ(e1-x1+1)≤0恒成立,即λ≥
2e1−x1 |
e1−x1+1 |
令函数k(x)=
2e1−x |
e1−x+1 |
2 |
e1−x+1 |
∴当x∈(0,1)时,k(x)<k(0)=
2e |
e+1 |
∴λ≥
2e |
e+1 |
(iii)当x1∈(-∞,0)时,2e1-x1-λ(e1-x1+1)≥0恒成立,即λ≤
2e1−x1
作业帮用户
2017-11-12
举报
![]()
举报该用户的提问
举报类型(必填)
举报理由(必填) 0/100
提交
![]() ![]() |
看了设a为实数,函数f(x)=x2...的网友还看了以下:
对于正整数a,b,c(a小于等于b小于等于c)和非零实数x,y,z,w,若a的x次方=b的y次方= 2020-04-06 …
1.设函数f(x)=x-ln(x+2),证明函数f(x)d[(e^-2)-2,(e^4)-2]内有 2020-04-26 …
若多项式f(x)=x^3+a^2x^2+x-3a能被x-1整除,则实数a=?若多项式f(x)=x^ 2020-05-13 …
f(x)=x^2+ax+b(1)函数f(x)的图像过(1,1),f(-1)=f(3),求g(x)= 2020-05-16 …
如果存在实数x,使cosα=x2+12x成立,那么实数x的取值范围是()A.{-1,1}B.{x| 2020-06-03 …
已知函数f(x)=x2+ax+b.(1)若对任意的实数x,都有f(x)≥2x+a,求b的取值范围; 2020-06-08 …
对于任意实数x、y、z,定义运算“※”,满足x※y=6x2+4xy+y2−249(x+1)2+(y 2020-07-17 …
F(x)=x(e^x-1)-ax^2,若当x≥0时f(x)≥0,求a的取值范围?f(xF(x)=x 2020-07-26 …
已知函数f(x)=(x平方+2x+a)/x,x∈[1,正无穷),(1)当a=1/2时,求函数f(已 2020-07-27 …
已知函数f(x)=x^2-2ax+5(a>1)若f(x)在区间(负无穷,2]上是减函数,对任意的x 2020-08-01 …