早教吧作业答案频道 -->数学-->
F(x)=x(e^x-1)-ax^2,若当x≥0时f(x)≥0,求a的取值范围?f(xF(x)=x(e^x-1)-ax^2,若当x≥0时f(x)≥0,求a的取值范围?f(x)=x*(e^x-1)-ax^2所以,f'(x)=e^x-1+x*e^x-2ax=(x+1)e^x-2ax-1则当x=0时,有:f'(x)=0.且f(0)=0已知当x≥0时,f(
题目详情
F(x)=x(e^x-1)-ax^2 ,若当x≥0时f(x)≥0,求a的取值范围?f(x
F(x)=x(e^x-1)-ax^2 ,若当x≥0时f(x)≥0,求a的取值范围?
f(x)=x*(e^x-1)-ax^2
所以,f'(x)=e^x-1+x*e^x-2ax=(x+1)e^x-2ax-1
则当x=0时,有:f'(x)=0.且f(0)=0
已知当x≥0时,f(x)≥0
所以,必须满足在x>0时,f'(x)>0【因为只有这样才能保证f(x)在x>0时递增,且f(x)≥f(0)=0】
则:f''(x)=e^x+(x+1)e^x-2a=(x+2)e^x-2a在x>0时大于等于零
所以,(0+2)*e^0-2a≥0
则,a≤1
本题为什么要求导两次,它的作用是什么
F(x)=x(e^x-1)-ax^2 ,若当x≥0时f(x)≥0,求a的取值范围?
f(x)=x*(e^x-1)-ax^2
所以,f'(x)=e^x-1+x*e^x-2ax=(x+1)e^x-2ax-1
则当x=0时,有:f'(x)=0.且f(0)=0
已知当x≥0时,f(x)≥0
所以,必须满足在x>0时,f'(x)>0【因为只有这样才能保证f(x)在x>0时递增,且f(x)≥f(0)=0】
则:f''(x)=e^x+(x+1)e^x-2a=(x+2)e^x-2a在x>0时大于等于零
所以,(0+2)*e^0-2a≥0
则,a≤1
本题为什么要求导两次,它的作用是什么
▼优质解答
答案和解析
f(x)≧0
即:x(e^x-1)-ax²≧0
因为x≧0,所以,两边约去一个x得:
e^x-1-ax≧0
ax≦e^x-1
x=0时,0≦0,得:a∈R;
x>0时,a≦(e^x-1)/x
令g(x)=(e^x-1)/x,x>0
g'(x)=(xe^x-e^x+1)/x²=[(x-1)e^x+1]/x²
令h(x)=(x-1)e^x+1,x>0
h'(x)=e^x+(x-1)e^x=xe^x>0
所以,h(x)=(x-1)e^x+1在(0,+∞)上递增,
则:h(x)>h(0)=0
所以,g'(x)=h(x)/x²>0
所以,g(x)=(e^x-1)/x在(0,+∞)上递增,
则:g(x)>g(0),
lim(x→0)(e^x-1)/x=1
所以,g(x)>g(0)=1
所以,a≦1
即:x(e^x-1)-ax²≧0
因为x≧0,所以,两边约去一个x得:
e^x-1-ax≧0
ax≦e^x-1
x=0时,0≦0,得:a∈R;
x>0时,a≦(e^x-1)/x
令g(x)=(e^x-1)/x,x>0
g'(x)=(xe^x-e^x+1)/x²=[(x-1)e^x+1]/x²
令h(x)=(x-1)e^x+1,x>0
h'(x)=e^x+(x-1)e^x=xe^x>0
所以,h(x)=(x-1)e^x+1在(0,+∞)上递增,
则:h(x)>h(0)=0
所以,g'(x)=h(x)/x²>0
所以,g(x)=(e^x-1)/x在(0,+∞)上递增,
则:g(x)>g(0),
lim(x→0)(e^x-1)/x=1
所以,g(x)>g(0)=1
所以,a≦1
看了 F(x)=x(e^x-1)-...的网友还看了以下:
提示:D-C=0A-B,A-D,D-C,D-E,E-F=1A-D,C-F=2A-B,D-E,E-F 2020-04-06 …
△ABC,△CEF都为等腰直角三角形,当E,F在AC,BC上,∠ACB=90°,连BE,AF,M为 2020-04-11 …
在平行四边形ABCD中,点E,F分别是线段AD,BC上的两动点,点E从点A向D运动在平行四边形AB 2020-05-13 …
在正方体abcd-a1b1c1d1中,过对角线BD1的一个平秒交AA1于E,叫CC1于F,则:平面 2020-06-06 …
现有A,B,C,D,E,F,G七种短周期主族元素,原子序数依次增大.已知A与D,C与F分别同主族, 2020-07-07 …
高数导数问题.设f(x)=(e^x-e^a)g(x)在x=a处可导,则函数g(x)应该满足条件是? 2020-07-20 …
已知:直线y=kx+6与x轴y轴分别交于点E,F,点E的坐标为(-8,0),在x轴上有一点A的坐标 2020-07-25 …
如图,O的内接四边形ABCD两组对边的延长线分别交于点E、F.(1)当∠E=∠F时,则∠ADC=° 2020-07-26 …
已知函数f(x)=(a+lnx)除以x(a属于R)若a=4求曲线F(X)在点(e,f(e)处的切线 2020-07-27 …
在等腰三角形abc中AB=AC=4,点D是BC的中点,点E,F分别在边AB,AC滑动,且E、F分别不 2020-12-23 …