早教吧 育儿知识 作业答案 考试题库 百科 知识分享

在△ABC中,角A,B,C的对边分别为a,b,c,且满足(2a-c)cosB=bcosC;(1)求角B的大小;(2)设m=(sinA,cos2A),n=(4k,1)(k>1),且m•n的最大值是5,求k的值.

题目详情
在△ABC中,角A,B,C的对边分别为a,b,c,且满足(2a-c)cosB=bcosC;
(1)求角B的大小;
(2)设
m
=(sinA,cos2A),
n
=(4k,1)(k>1),且
m
n
的最大值是5,求k的值.
▼优质解答
答案和解析
(I)∵(2a-c)cosB=bcosC,∴(2sinA-sinC)cosB=sinBcosC
即2sinAcosB=sinBcosC+sinCcosB=sin(B+C)
∵A+B+C=π,∴2sinAcosB=sinA∵0<A<π,∴sinA≠0.
∴cosB=
1
2
∵0<B<π,∴B=
π
3

(II)
m
n
=4ksinA+cos2A=-2sin2A+4ksinA+1,A∈(0,
3

设sinA=t,则t∈(0,1].则
m
n
=-2t2+4kt+1=-2(t-k)2+1+2k2,t∈(0,1]
∵k>1,∴t=1时,
m
n
取最大值.依题意得,-2+4k+1=5,∴k=
3
2