早教吧作业答案频道 -->数学-->
已知函数f(x)=x3+ax2+bx+c,曲线y=f(x)在x=1处的切线为l:3x-y+1=0,当x=时,y=f(x)有极值.(1)求a、b、c的值;(2)求y=f(x)在[-3,1]上的最大值和最小值.
题目详情
已知函数f(x)=x3+ax2+bx+c,曲线y=f(x)在x=1处的切线为l:3x-y+1=0,当x=
时,y=f(x)有极值.
(1)求a、b、c的值;
(2)求y=f(x)在[-3,1]上的最大值和最小值.

(1)求a、b、c的值;
(2)求y=f(x)在[-3,1]上的最大值和最小值.
▼优质解答
答案和解析
(1)先对函数f(x)进行求导,根据f'(1)=3,f′
=0,f(1)=4可求出a,b,c的值,得到答案.
(2)由(1)可知函数f(x)的解析式,然后求导数后令导函数等于0,再根据导函数的正负判断函数在[-3,1]上的单调性,最后可求出最值.
【解析】
(1)由f(x)=x3+ax2+bx+c,得
f′(x)=3x2+2ax+b
当x=1时,切线l的斜率为3,可得2a+b=0.①
当x=
时,y=f(x)有极值,则f′
=0,
可得4a+3b+4=0.②
由①、②解得a=2,b=-4.
由于l上的切点的横坐标为x=1,
∴f(1)=4.∴1+a+b+c=4.
∴c=5.
(2)由(1)可得f(x)=x3+2x2-4x+5,
∴f′(x)=3x2+4x-4.
令f′(x)=0,得x=-2,或x=
.

∴f(x)在x=-2处取得极大值f(-2)=13.
在x=
处取得极小值f
=
.
又f(-3)=8,f(1)=4.
∴f(x)在[-3,1]上的最大值为13,最小值为
.

(2)由(1)可知函数f(x)的解析式,然后求导数后令导函数等于0,再根据导函数的正负判断函数在[-3,1]上的单调性,最后可求出最值.
【解析】
(1)由f(x)=x3+ax2+bx+c,得
f′(x)=3x2+2ax+b
当x=1时,切线l的斜率为3,可得2a+b=0.①
当x=


可得4a+3b+4=0.②
由①、②解得a=2,b=-4.
由于l上的切点的横坐标为x=1,
∴f(1)=4.∴1+a+b+c=4.
∴c=5.
(2)由(1)可得f(x)=x3+2x2-4x+5,
∴f′(x)=3x2+4x-4.
令f′(x)=0,得x=-2,或x=


∴f(x)在x=-2处取得极大值f(-2)=13.
在x=



又f(-3)=8,f(1)=4.
∴f(x)在[-3,1]上的最大值为13,最小值为

看了 已知函数f(x)=x3+ax...的网友还看了以下:
已知函数f(x)=cosxsinx(x∈R),给出下列四个命题:①若f(x1)=-f(x2),则x 2020-04-12 …
(1),设g(x)=1+x,且当x≠0时,f(g(x))=(1-x)/x,求f(1/2)(2),f 2020-04-26 …
已知函數f(x)=1+log2x(底数是2,x是自变量),其中x大於等於1小於等於8,則y=f^2 2020-05-13 …
只有F(x)=f(x)-f(-x)的定义域的意思不理解!已知f(x)的定义域为-4,3,则函数F( 2020-05-15 …
求证:函数y=f(a+x)与函数y=f(a-x)关于x=0对称,其中x∈R求证:函数y=f(a+x 2020-05-16 …
设函数f(x)=√3sin(π/4×x-π/3)(1)求f(x)的最小正周期(2)若函数y=g(x 2020-06-04 …
已知函数f(x)=ax^2+bx+c(a>0,b,c属于R)若函数f(x)的最小值是f(-1)=0 2020-06-06 …
F(x)=x(e^x-1)-ax^2,若当x≥0时f(x)≥0,求a的取值范围?f(xF(x)=x 2020-07-26 …
求f(x)解析式1.已知f(1+1/x)=x2+1/x2+3/x,求f(x)解析式2.已知f(求f( 2020-12-08 …
定义函数y=f(x),x∈D(D为定义域)图象上的点到坐标原点的距离为函数的y=f(x),x∈D的模 2020-12-18 …