早教吧作业答案频道 -->数学-->
如图1,在正方形ABCD内作∠EAF=45°,AE交BC于点E,AF交CD于点F,连接EF,过点A作AH⊥EF,垂足为H.(1)如图2,将△ADF绕点A顺时针旋转90°得到△ABG.①求证:△AGE≌△AFE;②若BE=2,DF=3,求AH的
题目详情
如图1,在正方形ABCD内作∠EAF=45°,AE交BC于点E,AF交CD于点F,连接EF,过点A作AH⊥EF,垂足为H.
(1)如图2,将△ADF绕点A顺时针旋转90°得到△ABG.
①求证:△AGE≌△AFE;
②若BE=2,DF=3,求AH的长.
(2)如图3,连接BD交AE于点M,交AF于点N.请探究并猜想:线段BM,MN,ND之间有什么数量关系?并说明理由.

(1)如图2,将△ADF绕点A顺时针旋转90°得到△ABG.
①求证:△AGE≌△AFE;
②若BE=2,DF=3,求AH的长.
(2)如图3,连接BD交AE于点M,交AF于点N.请探究并猜想:线段BM,MN,ND之间有什么数量关系?并说明理由.

▼优质解答
答案和解析
(1)①由旋转的性质可知:AF=AG,∠DAF=∠BAG.
∵四边形ABCD为正方形,
∴∠BAD=90°.
又∵∠EAF=45°,
∴∠BAE+∠DAF=45°.
∴∠BAG+∠BAE=45°.
∴∠GAE=∠FAE.
在△GAE和△FAE中
,
∴△GAE≌△FAE.
②∵△GAE≌△FAE,AB⊥GE,AH⊥EF,
∴AB=AH,GE=EF=5.
设正方形的边长为x,则EC=x-2,FC=x-3.
在Rt△EFC中,由勾股定理得:EF2=FC2+EC2,即(x-2)2+(x-3)2=25.
解得:x=6.
∴AB=6.
∴AH=6.
(3)如图所示:将△ABM逆时针旋转90°得△ADM′.

∵四边形ABCD为正方形,
∴∠ABD=∠ADB=45°.
由旋转的性质可知:∠ABM=∠ADM′=45°,BE=DM′.
∴∠NDM′=90°.
∴NM′2=ND2+DM′2.
∵∠EAM′=90°,∠EAF=45°,
∴∠EAF=∠FAM′=45°.
在△AMN和△ANM′中,
,
∴△AMN≌△ANM′.
∴MN=NM′.
又∵BM=DM′,
∴MN2=ND2+BM2.
∵四边形ABCD为正方形,
∴∠BAD=90°.
又∵∠EAF=45°,
∴∠BAE+∠DAF=45°.
∴∠BAG+∠BAE=45°.
∴∠GAE=∠FAE.
在△GAE和△FAE中
|
∴△GAE≌△FAE.
②∵△GAE≌△FAE,AB⊥GE,AH⊥EF,
∴AB=AH,GE=EF=5.
设正方形的边长为x,则EC=x-2,FC=x-3.
在Rt△EFC中,由勾股定理得:EF2=FC2+EC2,即(x-2)2+(x-3)2=25.
解得:x=6.
∴AB=6.
∴AH=6.
(3)如图所示:将△ABM逆时针旋转90°得△ADM′.

∵四边形ABCD为正方形,
∴∠ABD=∠ADB=45°.
由旋转的性质可知:∠ABM=∠ADM′=45°,BE=DM′.
∴∠NDM′=90°.
∴NM′2=ND2+DM′2.
∵∠EAM′=90°,∠EAF=45°,
∴∠EAF=∠FAM′=45°.
在△AMN和△ANM′中,
|
∴△AMN≌△ANM′.
∴MN=NM′.
又∵BM=DM′,
∴MN2=ND2+BM2.
看了 如图1,在正方形ABCD内作...的网友还看了以下:
无穷小与极限为0的区别f(0)=0,f(x)在点X=0处可导的充分必要条件是limh->0f(2h 2020-04-27 …
已知f(x)在[0,1]连续,(0,1)可导,且f(0)=0,f(1)=1/2,试证明存在不同的h 2020-05-14 …
变限积分求道问题对函数f(t+h)-f(t-h)在[-h,h]上的积分对h求导.F(h)=∫[-h 2020-05-23 …
求证E,F,G,M,N,H六点共面已知正方体ABCD-A1B1C1D1中,点E,F,G,H,M,N 2020-07-09 …
求一△的外心和垂心已知三点O(0,0),B(1,0),C(b,c)是△OBC的三个顶点,求三点的的 2020-07-30 …
如图,在△ABC中,已知A(,0),B(,0),CD⊥AB于D,△ABC的垂心为H,且,(Ⅰ)求点 2020-07-30 …
一个立体几何的问题在三棱柱ABC-A'B'C'中,点E.F.H.K分别为AC'.CB'.A'B.B 2020-08-02 …
ABCD是圆的内接四边形,AC是圆的直径,BD垂直于AC,BD与AC的交点为E,F在DA的延长线上 2020-08-03 …
确定f(x)在点x=0可导,非常迷惑,求教大神,非常感谢~lim[f(2h)-f(h)]/h存在,不 2020-11-03 …
设函数f(x)的定义域为(-l,l),证明必存在(-l,l)上的偶函数及奇函数h(x),使得f(x) 2020-12-14 …