早教吧作业答案频道 -->数学-->
变限积分求道问题对函数f(t+h)-f(t-h)在[-h,h]上的积分对h求导.F(h)=∫[-h,h]f(t+h)-f(t-h)dt(其中[-h,h]为积分区间,-h为下限,h为上限)参考答案中:∫[-h,h]f(t+h)dt=∫[0,2h]f(u)du(做代换u=t+h)∫[-h,h]f(t+h)dt
题目详情
变限积分求道问题
对函数 f(t+h)-f(t-h)
在[-h,h]上的积分对h求导.
F(h)=∫[-h,h]f(t+h)-f(t-h)dt
(其中[-h,h]为积分区间,-h为下限,h为上限)
参考答案中:
∫[-h,h]f(t+h)dt = ∫[0,2h]f(u)du (做代换u=t+h)
∫[-h,h]f(t+h)dt = ∫[-2h,0]f(u)du (做代换u=t-h)
所以F(h)=∫[-h,h]f(t+h)-f(t-h)dt
=∫[-h,h]f(t+h)dt - ∫[-h,h]f(t+h)dt
=∫[0,2h]f(u)du - ∫[-2h,0]f(u)du
求导F'(h)=2f(2h) - 2f(-2h)
我的解法:直接求导
F'(h)=f(h+h)-f(h-h) + f(-h+h)-f(-h-h)
(上限部分 ) (下限部分 )
=f(2h) - f(-2h)
正好和参考答案的差了2倍
原题为求 F(h)/(h^2) 取 h->0 的极限(已知 f(0)=-2)
错在哪里.为什么不能这样求?
对函数 f(t+h)-f(t-h)
在[-h,h]上的积分对h求导.
F(h)=∫[-h,h]f(t+h)-f(t-h)dt
(其中[-h,h]为积分区间,-h为下限,h为上限)
参考答案中:
∫[-h,h]f(t+h)dt = ∫[0,2h]f(u)du (做代换u=t+h)
∫[-h,h]f(t+h)dt = ∫[-2h,0]f(u)du (做代换u=t-h)
所以F(h)=∫[-h,h]f(t+h)-f(t-h)dt
=∫[-h,h]f(t+h)dt - ∫[-h,h]f(t+h)dt
=∫[0,2h]f(u)du - ∫[-2h,0]f(u)du
求导F'(h)=2f(2h) - 2f(-2h)
我的解法:直接求导
F'(h)=f(h+h)-f(h-h) + f(-h+h)-f(-h-h)
(上限部分 ) (下限部分 )
=f(2h) - f(-2h)
正好和参考答案的差了2倍
原题为求 F(h)/(h^2) 取 h->0 的极限(已知 f(0)=-2)
错在哪里.为什么不能这样求?
▼优质解答
答案和解析
F'(h)=d/dh∫[-h,h]f(t+h)dt-d/dh∫[-h,h]f(t-h)dt
=d/dh∫[0,2h]f(u)du-d/dh∫[-2h,0]f(u)du
=2f(2h)-2f(-2h)
本题因为是对h求导,应将h用另一变量代换,这样才能得出正确的答案,望采纳,谢谢.
=d/dh∫[0,2h]f(u)du-d/dh∫[-2h,0]f(u)du
=2f(2h)-2f(-2h)
本题因为是对h求导,应将h用另一变量代换,这样才能得出正确的答案,望采纳,谢谢.
看了 变限积分求道问题对函数f(t...的网友还看了以下:
无穷小与极限为0的区别f(0)=0,f(x)在点X=0处可导的充分必要条件是limh->0f(2h 2020-04-27 …
when引导的从句是哪些?以及分别在主句和从句中的时态变化?主将从现适用于when引导的时间状语从 2020-05-13 …
读我国四大地理区域.(1)图中界线Ⅰ是一线;界限Ⅱ与毫米等降水量线大致吻合.(2)区域①最显著的自 2020-05-13 …
变限积分求道问题对函数f(t+h)-f(t-h)在[-h,h]上的积分对h求导.F(h)=∫[-h 2020-05-23 …
什么是译音用字?我在字典里查“呵”字,出现下面结果:您查询的字是:呵?多音字:hē,hā,ā(一) 2020-06-12 …
f(0)=0,则f(x)在x=0处可导的充要条件为A.lim(1/h^2)f(1-cosh),h→ 2020-06-12 …
f(0)=0,则f(x)在x=0处可导的充要条件为A.lim(1/h^2)f(1-cosh),h→ 2020-06-18 …
某地区人口数从2000年起每年以9%的增长率增长,截止2005年人口数围2100万。该地区2000年 2020-11-11 …
读“H”型经济格局图丙回答下列问题.(1)本格局东起,西到,是一个典型的“”区域.(2)“H”型经济 2020-12-05 …
从城市的空间结构来看,工业区一般位于城市的边缘,关于其原因的说法不正确的是()A.由于工业区造成的环 2020-12-10 …