早教吧作业答案频道 -->其他-->
函数Y=F(X)是定义域在R上的偶函数,且对任意实数X都有F(X+1)=F(X-1)成立.已知X∈1,2时,F(X)=logaX(1)求X∈-1,1时,函数F(X)的表达式(2)求X∈2K-1,2K+1(K∈Z)时,函数F(X)的解析式(3)若函数F(X)
题目详情
函数Y=F(X)是定义域在R上的偶函数,且对任意实数X都有F(X+1)=F(X-1)成立.已知X∈【1,2】时,F(X)=logaX
(1)求X∈【-1,1】时,函数F(X)的表达式
(2)求X∈【2K-1,2K+1】(K∈Z)时,函数F(X)的解析式
(3)若函数F(X)的最大值为1/2,在区间【-1,3】上,解关于X的不等式F(X)>1/4
(1)求X∈【-1,1】时,函数F(X)的表达式
(2)求X∈【2K-1,2K+1】(K∈Z)时,函数F(X)的解析式
(3)若函数F(X)的最大值为1/2,在区间【-1,3】上,解关于X的不等式F(X)>1/4
▼优质解答
答案和解析
f(x)=f(-x)
f(x+1)=f(x-1)
令x=y+1
f(y)=f(y+2)对所有y都成立,所以f是一周期函数,T=2
[1,2]和[1-2,2-2]=[-1,0]函数值是相同的,
所以f(x)=log a (x+2) 在[-1,0]上,
然后由于f是偶函数,f(x)=f(-x),在对称区间[0,1]上
f(x)=f(-x)=log a (2-x)
然后[-1,1]上f(x)为一个周期
扩展开去到整个R
对于任意整数k,
区间[2k-1,2k+1]一个周期的f(x)值与[-1,1]上相同
[2k-1,2k]上f(x)=log a (x-2k+2) (向右跨过了(k-1)个周期,
即向右平移了2(k-1))
同理[2k,2k+1]上f(x)=log a (2-[x-(2k+2)])=log a (4-2k-x)
k可以取任意整数
f(x+1)=f(x-1)
令x=y+1
f(y)=f(y+2)对所有y都成立,所以f是一周期函数,T=2
[1,2]和[1-2,2-2]=[-1,0]函数值是相同的,
所以f(x)=log a (x+2) 在[-1,0]上,
然后由于f是偶函数,f(x)=f(-x),在对称区间[0,1]上
f(x)=f(-x)=log a (2-x)
然后[-1,1]上f(x)为一个周期
扩展开去到整个R
对于任意整数k,
区间[2k-1,2k+1]一个周期的f(x)值与[-1,1]上相同
[2k-1,2k]上f(x)=log a (x-2k+2) (向右跨过了(k-1)个周期,
即向右平移了2(k-1))
同理[2k,2k+1]上f(x)=log a (2-[x-(2k+2)])=log a (4-2k-x)
k可以取任意整数
看了 函数Y=F(X)是定义域在R...的网友还看了以下:
1.关于x的方程2x+a/x-1=1的解是正数,则a的取值范围是?2.分式方程1/x+1=2/x- 2020-05-01 …
1.设2的X的4次方减去3的X的立方加上4X加5等于A括号X-1的4次方加上X减1的3次方加上C括 2020-05-13 …
(X-1)(X+1)=X的平方-1(X-1)(X的平方+X+1)=X的3次方-1(X-1)(X的3 2020-05-21 …
1.求函数y=(1/4)x-(1/2)x+1{x属于[-3,2]}的值域.注:题中的x为x次方2. 2020-06-28 …
y=4/(e的x次方+1)求导,一点不懂,第二行末尾的(e^x+1)'怎么来的?利用复合函数求导法 2020-07-21 …
对于集合M,定义函数fM(x)=−1,x∈M1,x∉M.对于两个集合M,N,定义集合M△N={x| 2020-08-01 …
1+x+x(x+1)+x(x+1)^2=(1+x)[1+x+x(x+1)]=(1+x)^2(1+x 2020-08-03 …
将函数f(x)=ln(2+x)展开成x的幂级数不同展开方法结果不一样?第一种:f'(x)=1/(2 2020-08-03 …
试求出所有的函数f:R→R,使得对于任何的x,y∈R,都有f(x^2+y^2)=xf(x)+yf(y 2020-10-31 …
已知命题p:|x-3|≥2;q:x∈Z,若p∧q,q同时是假命题,则满足条件的x的集合为[]A.{x 2020-11-01 …