早教吧作业答案频道 -->其他-->
函数Y=F(X)是定义域在R上的偶函数,且对任意实数X都有F(X+1)=F(X-1)成立.已知X∈1,2时,F(X)=logaX(1)求X∈-1,1时,函数F(X)的表达式(2)求X∈2K-1,2K+1(K∈Z)时,函数F(X)的解析式(3)若函数F(X)
题目详情
函数Y=F(X)是定义域在R上的偶函数,且对任意实数X都有F(X+1)=F(X-1)成立.已知X∈【1,2】时,F(X)=logaX
(1)求X∈【-1,1】时,函数F(X)的表达式
(2)求X∈【2K-1,2K+1】(K∈Z)时,函数F(X)的解析式
(3)若函数F(X)的最大值为1/2,在区间【-1,3】上,解关于X的不等式F(X)>1/4
(1)求X∈【-1,1】时,函数F(X)的表达式
(2)求X∈【2K-1,2K+1】(K∈Z)时,函数F(X)的解析式
(3)若函数F(X)的最大值为1/2,在区间【-1,3】上,解关于X的不等式F(X)>1/4
▼优质解答
答案和解析
f(x)=f(-x)
f(x+1)=f(x-1)
令x=y+1
f(y)=f(y+2)对所有y都成立,所以f是一周期函数,T=2
[1,2]和[1-2,2-2]=[-1,0]函数值是相同的,
所以f(x)=log a (x+2) 在[-1,0]上,
然后由于f是偶函数,f(x)=f(-x),在对称区间[0,1]上
f(x)=f(-x)=log a (2-x)
然后[-1,1]上f(x)为一个周期
扩展开去到整个R
对于任意整数k,
区间[2k-1,2k+1]一个周期的f(x)值与[-1,1]上相同
[2k-1,2k]上f(x)=log a (x-2k+2) (向右跨过了(k-1)个周期,
即向右平移了2(k-1))
同理[2k,2k+1]上f(x)=log a (2-[x-(2k+2)])=log a (4-2k-x)
k可以取任意整数
f(x+1)=f(x-1)
令x=y+1
f(y)=f(y+2)对所有y都成立,所以f是一周期函数,T=2
[1,2]和[1-2,2-2]=[-1,0]函数值是相同的,
所以f(x)=log a (x+2) 在[-1,0]上,
然后由于f是偶函数,f(x)=f(-x),在对称区间[0,1]上
f(x)=f(-x)=log a (2-x)
然后[-1,1]上f(x)为一个周期
扩展开去到整个R
对于任意整数k,
区间[2k-1,2k+1]一个周期的f(x)值与[-1,1]上相同
[2k-1,2k]上f(x)=log a (x-2k+2) (向右跨过了(k-1)个周期,
即向右平移了2(k-1))
同理[2k,2k+1]上f(x)=log a (2-[x-(2k+2)])=log a (4-2k-x)
k可以取任意整数
看了 函数Y=F(X)是定义域在R...的网友还看了以下:
已知函数f(x)=(a*2^x+a2-2)÷(2^x-1)(x∈R,x≠0),其中a为常数,且a﹤ 2020-05-13 …
1若f(x)是定义在R上的以3为周期的偶函数,且f(2)=0,则方程f(x)=0在区间(0,6)内 2020-05-23 …
求解一个数学题,考研的,各位帮帮忙,真心感谢.若函数f(x)在[0,1]上存在二阶导,且f(0)= 2020-06-06 …
已知f(x)是定义在R上的函数,对任意x∈R均有f(x+1)=-f(x),f(1-x)=f(1+x 2020-06-08 …
已知f(x)是定义在R上的函数,f(1)=10,详细请看后面,,我们老师上课时解错了.已知f(x) 2020-06-13 …
已知f(x)是定义在R上的函数,f(1)=10,详细请看后面,,我们老师上课时解错了,已知f(x) 2020-06-13 …
高中数学已知函数∫(x)=ax平方 bx c已知函数∫(x)=ax平方 bx c(a大于0,bc属 2020-06-27 …
已知函数fx=ax^2+bx+c(a>0,b∈R,c∈R)已知函数f(x)=ax^2+bx+c(a 2020-07-26 …
分段函数求解当x的绝对值小于等于1,f(x)=arctanx当x大于1时f(x)=π/4+(x-1) 2020-12-08 …
以下哪组条件可以保证f(1)是区间{0,2}上连续函数f(x)的最大值?()A.f'(1)=0B.f 2021-02-13 …