早教吧作业答案频道 -->数学-->
已知函数f(x)=(a*2^x+a2-2)÷(2^x-1)(x∈R,x≠0),其中a为常数,且a﹤0.(1)若f(x)是奇函数,求出a的取值集合A.(2)若a=-1,有f(x)的反函数f-1(x),且函数y=g(x)的图像与y=f-1(X)的图像关于y=x对称,求g(1)的取值集合B.(3)
题目详情
已知函数f(x)=(a*2^x+a2-2)÷(2^x-1)(x∈R,x≠0),其中a为常数,且a﹤0.
(1)若f(x)是奇函数,求出a的取值集合A.
(2)若a=-1,有f(x)的反函数f-1(x),且函数y=g(x)的图像与y=f-1(X)的图像关于y=x对称,求g(1)的取值集合B.
(3)对于问题(1)中的A,当a∈﹛a|a
(1)若f(x)是奇函数,求出a的取值集合A.
(2)若a=-1,有f(x)的反函数f-1(x),且函数y=g(x)的图像与y=f-1(X)的图像关于y=x对称,求g(1)的取值集合B.
(3)对于问题(1)中的A,当a∈﹛a|a
▼优质解答
答案和解析
(a^t) * f(2t) + m * f(t) ≥ 0
(a^t) * [a^(2t)-1/a^(2t)] + m[a^t-1/ (a^t)] ≥ 0
a^(3t)-1/a^t + ma^t -m/a^t ≥ 0
a^(3t) + ma^t - (m+1)/a^t ≥ 0
∵a>1,1≤t≤2
∴ a^t >0
∴两边同乘以a^t,不等号不变向
a^(4t) + ma^(2t) - (m+1) ≥ 0
令u=a^(2t)
∵a>1,1≤t≤2
∴u∈[a ,a^2]
f(u) = u^2+mu-(m+1)开口向上,对称轴u=-m/2
(一)当对称轴在区间u∈[a ,a^2]内时,即a ≤-m/2 ≤ a^2,-2a^2 ≤ m ≤ -2a时,
满足极小值≥0即可:
{4*1*[-(m+1)-m^2]} / (4*1) ≥ 0
-m^2-4m-4 ≥ 0
(m+2)^2 ≤ 0
-2 ≤ m ≤ 2
∵a>1
∴-2a^2 <-2,-2a <-2
∴m=-2
即:当 -2a^2 ≤ m ≤ -2a时,取m=-2
(二)当对称轴在区间u∈[a ,a^2]右侧时,-m/2>a^2,m<-2a^2时:
只要满足f(a^2)≥0即可
f(a^2) =(a^2)^2+ma^2-(m+1) = a^4+ma^2-(m+1) <a^4-2a^4+2a^2-1
=-(a^2-1)^2<0,不能满足满足f(a^2)≥0
(三)当对称轴在区间u∈[a ,a^2]左侧时,-m/2<a,m>-2a时:
只要满足f(a)≥0即可
f(a) = a^2+ma-(m+1) =(a^2-1)+(a-1)m ≥ 0
(a-1)m ≥ (a^2-1)=(a+1)(a-1)
∵a>1,∴a-1>0
∴m>a+1
综上:m=-2 ,或m>a+1
(a^t) * [a^(2t)-1/a^(2t)] + m[a^t-1/ (a^t)] ≥ 0
a^(3t)-1/a^t + ma^t -m/a^t ≥ 0
a^(3t) + ma^t - (m+1)/a^t ≥ 0
∵a>1,1≤t≤2
∴ a^t >0
∴两边同乘以a^t,不等号不变向
a^(4t) + ma^(2t) - (m+1) ≥ 0
令u=a^(2t)
∵a>1,1≤t≤2
∴u∈[a ,a^2]
f(u) = u^2+mu-(m+1)开口向上,对称轴u=-m/2
(一)当对称轴在区间u∈[a ,a^2]内时,即a ≤-m/2 ≤ a^2,-2a^2 ≤ m ≤ -2a时,
满足极小值≥0即可:
{4*1*[-(m+1)-m^2]} / (4*1) ≥ 0
-m^2-4m-4 ≥ 0
(m+2)^2 ≤ 0
-2 ≤ m ≤ 2
∵a>1
∴-2a^2 <-2,-2a <-2
∴m=-2
即:当 -2a^2 ≤ m ≤ -2a时,取m=-2
(二)当对称轴在区间u∈[a ,a^2]右侧时,-m/2>a^2,m<-2a^2时:
只要满足f(a^2)≥0即可
f(a^2) =(a^2)^2+ma^2-(m+1) = a^4+ma^2-(m+1) <a^4-2a^4+2a^2-1
=-(a^2-1)^2<0,不能满足满足f(a^2)≥0
(三)当对称轴在区间u∈[a ,a^2]左侧时,-m/2<a,m>-2a时:
只要满足f(a)≥0即可
f(a) = a^2+ma-(m+1) =(a^2-1)+(a-1)m ≥ 0
(a-1)m ≥ (a^2-1)=(a+1)(a-1)
∵a>1,∴a-1>0
∴m>a+1
综上:m=-2 ,或m>a+1
看了 已知函数f(x)=(a*2^...的网友还看了以下:
1在平面直角坐标系XOY中,已知一次函数Y=KX+B(K不等于0)的图像经过点P(1.1),与X轴 2020-05-13 …
若抛物线的对称轴是x=-1,它与x轴交点间的距离等于4,它与y轴交点的纵坐标为-6,则此抛物线的表 2020-05-16 …
Y除与X是不是等于Y的平方除与X的平方?1除与-X+Y是不是等于-(1除与X-Y) 2020-05-16 …
若y与x-1成正比例,且当x=-2时y=9(1)y与x的函数解析式为(2)当x=9若y与x-1成正 2020-05-17 …
反比例函数问题已知Y=Y1+Y2,Y1与X成正比例,Y2与X∧2成反比例,且当X=2和X=3时,Y 2020-06-08 …
关于反比例函数反比例的区别y与x-1成反比例.当x=时y=时求y与x的函数关系y=2/x-1问:1 2020-06-13 …
已知:如图,二次函数y=2x2-2的图象与x轴交于A、B两点(点A在点B的左边),与y轴交于点C, 2020-06-14 …
抛物线y=(x-3)(x+1)与x轴交于A,B两点(点A在点B左侧),与y轴交于点C,点D为顶点. 2020-06-23 …
设函数f(x)在[1,+∞)上连续,若由曲线y=f(x),直线x=1,x=t(t>1)与x轴所围成 2020-07-04 …
(2003•福州)已知:如图,二次函数y=2x2-2的图象与x轴交于A、B两点(点A在点B的左边) 2020-07-13 …