早教吧作业答案频道 -->数学-->
已知函数f(x)=(a*2^x+a2-2)÷(2^x-1)(x∈R,x≠0),其中a为常数,且a﹤0.(1)若f(x)是奇函数,求出a的取值集合A.(2)若a=-1,有f(x)的反函数f-1(x),且函数y=g(x)的图像与y=f-1(X)的图像关于y=x对称,求g(1)的取值集合B.(3)
题目详情
已知函数f(x)=(a*2^x+a2-2)÷(2^x-1)(x∈R,x≠0),其中a为常数,且a﹤0.
(1)若f(x)是奇函数,求出a的取值集合A.
(2)若a=-1,有f(x)的反函数f-1(x),且函数y=g(x)的图像与y=f-1(X)的图像关于y=x对称,求g(1)的取值集合B.
(3)对于问题(1)中的A,当a∈﹛a|a
(1)若f(x)是奇函数,求出a的取值集合A.
(2)若a=-1,有f(x)的反函数f-1(x),且函数y=g(x)的图像与y=f-1(X)的图像关于y=x对称,求g(1)的取值集合B.
(3)对于问题(1)中的A,当a∈﹛a|a
▼优质解答
答案和解析
(a^t) * f(2t) + m * f(t) ≥ 0
(a^t) * [a^(2t)-1/a^(2t)] + m[a^t-1/ (a^t)] ≥ 0
a^(3t)-1/a^t + ma^t -m/a^t ≥ 0
a^(3t) + ma^t - (m+1)/a^t ≥ 0
∵a>1,1≤t≤2
∴ a^t >0
∴两边同乘以a^t,不等号不变向
a^(4t) + ma^(2t) - (m+1) ≥ 0
令u=a^(2t)
∵a>1,1≤t≤2
∴u∈[a ,a^2]
f(u) = u^2+mu-(m+1)开口向上,对称轴u=-m/2
(一)当对称轴在区间u∈[a ,a^2]内时,即a ≤-m/2 ≤ a^2,-2a^2 ≤ m ≤ -2a时,
满足极小值≥0即可:
{4*1*[-(m+1)-m^2]} / (4*1) ≥ 0
-m^2-4m-4 ≥ 0
(m+2)^2 ≤ 0
-2 ≤ m ≤ 2
∵a>1
∴-2a^2 <-2,-2a <-2
∴m=-2
即:当 -2a^2 ≤ m ≤ -2a时,取m=-2
(二)当对称轴在区间u∈[a ,a^2]右侧时,-m/2>a^2,m<-2a^2时:
只要满足f(a^2)≥0即可
f(a^2) =(a^2)^2+ma^2-(m+1) = a^4+ma^2-(m+1) <a^4-2a^4+2a^2-1
=-(a^2-1)^2<0,不能满足满足f(a^2)≥0
(三)当对称轴在区间u∈[a ,a^2]左侧时,-m/2<a,m>-2a时:
只要满足f(a)≥0即可
f(a) = a^2+ma-(m+1) =(a^2-1)+(a-1)m ≥ 0
(a-1)m ≥ (a^2-1)=(a+1)(a-1)
∵a>1,∴a-1>0
∴m>a+1
综上:m=-2 ,或m>a+1
(a^t) * [a^(2t)-1/a^(2t)] + m[a^t-1/ (a^t)] ≥ 0
a^(3t)-1/a^t + ma^t -m/a^t ≥ 0
a^(3t) + ma^t - (m+1)/a^t ≥ 0
∵a>1,1≤t≤2
∴ a^t >0
∴两边同乘以a^t,不等号不变向
a^(4t) + ma^(2t) - (m+1) ≥ 0
令u=a^(2t)
∵a>1,1≤t≤2
∴u∈[a ,a^2]
f(u) = u^2+mu-(m+1)开口向上,对称轴u=-m/2
(一)当对称轴在区间u∈[a ,a^2]内时,即a ≤-m/2 ≤ a^2,-2a^2 ≤ m ≤ -2a时,
满足极小值≥0即可:
{4*1*[-(m+1)-m^2]} / (4*1) ≥ 0
-m^2-4m-4 ≥ 0
(m+2)^2 ≤ 0
-2 ≤ m ≤ 2
∵a>1
∴-2a^2 <-2,-2a <-2
∴m=-2
即:当 -2a^2 ≤ m ≤ -2a时,取m=-2
(二)当对称轴在区间u∈[a ,a^2]右侧时,-m/2>a^2,m<-2a^2时:
只要满足f(a^2)≥0即可
f(a^2) =(a^2)^2+ma^2-(m+1) = a^4+ma^2-(m+1) <a^4-2a^4+2a^2-1
=-(a^2-1)^2<0,不能满足满足f(a^2)≥0
(三)当对称轴在区间u∈[a ,a^2]左侧时,-m/2<a,m>-2a时:
只要满足f(a)≥0即可
f(a) = a^2+ma-(m+1) =(a^2-1)+(a-1)m ≥ 0
(a-1)m ≥ (a^2-1)=(a+1)(a-1)
∵a>1,∴a-1>0
∴m>a+1
综上:m=-2 ,或m>a+1
看了 已知函数f(x)=(a*2^...的网友还看了以下:
(2012•吴中区一模)已知集合B中的数与集合A中对应的数之间的关系是某个一次函数,若用y表示集合 2020-05-17 …
关于集合的高一入门数学题,求救1:坐标平面上两坐标的点集是什么答案是{(x,y)|xy=0}..为 2020-06-03 …
若x∈空集,那么是否可以推出x>1?若x∈(1,2),可以推出x∈(0,3),因为(1,2)∈(0 2020-06-23 …
f(x)是实数集R上的奇函数,且当x>0,f(X)=log2 (x+1)实数集R上的奇函数,且当x 2020-06-27 …
空集是任何集合的子集,那么由空集可以推出其他的集合是正确的么?比如由X大于1小于2可推出X大于0小 2020-07-30 …
1.抛物线Y=X平方-2X+2用描述法表示的时候需要再特别指出X属于R吗?2.下列集合中,不同于另 2020-07-30 …
一题关于高中数学的集合题x属于集合A交B推出x不属于A交B→x不属于A且x不属于B→x属于A的补集 2020-07-30 …
不等式...X(X-1)/X+1>=0请问它的解集是怎么弄出来的一步步分晰,因为答案谁都有.首先是 2020-08-01 …
S=(x+1/2)(x+1/3)(x+1/4)……(x+1/100)用的是哪个公式书上说是活用的乘 2020-08-01 …
1命题:x=空集推出x>1;对吗?命题:x>1推出x属于R;这是真命题;逆否:x=空集推出x>1; 2020-08-02 …