早教吧作业答案频道 -->数学-->
A是n阶矩阵,A^2=E,证A可对角化
题目详情
▼优质解答
答案和解析
易知A的特征值只能是1或-1,并有(A+E)(A-E)=0,
则r(A+E)+r(E-A)≤n,同时又有r(A+E)+r(E-A)≥r(A+E+E-A)=r(2E)=n
故r(A+E)+r(E-A)=n,
那么A对于特征值-1的线性无关特征向量的个数为n-r(A+E);
A对于特征值1的线性无关特征向量的个数为n-r(A-E);
A的所有线性无关特征向量的个数是n-r(A+E)+n-r(A-E)=n个
所以A一定可对角化
则r(A+E)+r(E-A)≤n,同时又有r(A+E)+r(E-A)≥r(A+E+E-A)=r(2E)=n
故r(A+E)+r(E-A)=n,
那么A对于特征值-1的线性无关特征向量的个数为n-r(A+E);
A对于特征值1的线性无关特征向量的个数为n-r(A-E);
A的所有线性无关特征向量的个数是n-r(A+E)+n-r(A-E)=n个
所以A一定可对角化
看了 A是n阶矩阵,A^2=E,证...的网友还看了以下:
设A,B为n阶矩阵,且A与B相似,E为n阶单位矩阵,则()A.λE-A=λE-BB.A与B有相同的 2020-05-14 …
设A为n阶方阵,E为N阶单位矩阵,且A^2-A=2E,证明则r(2E-A)+r(E+A)=n设A为 2020-05-15 …
是不是对于所有n×n的矩阵A,都可以有A^k的幂运算呢,那怎么保证A^(k-1)·A=A·A^(k 2020-06-10 …
设n(n≥2)阶矩阵A满足(E-A)(E+A)=O,其中E为n阶单位矩阵,若已知E+A的秩r(E+ 2020-06-12 …
设A,B均为n阶方阵,E为n阶单位阵,且(A-E)(B-E)=0A=E或B=E|A-E|=0或|B 2020-06-18 …
设A为n阶矩阵.若存在正整数m使Am=O,则称A为n阶幂零矩阵.现设A为n阶幂零矩阵,E为n阶单位 2020-07-22 …
设A为n阶非零矩阵,E为n阶单位矩阵.若A3=0,则()A.E-A不可逆,E+A不可逆B.E-A不 2020-07-22 …
设A,B为n阶实对称矩阵,λ为实数,E为n阶单位矩阵,有以下三个命题:①A,B等价,则λE-A与λ 2020-08-02 …
n阶方阵A满足A^2=O,E是n阶单位阵,则A.|E-A|≠0,但|E+A|=0B|E-An阶方阵A 2020-11-02 …
试求矩阵B!设A,B为n阶矩阵,2A-B-AB=E,A^2=A,其中E为n阶单位矩阵.已知A=100 2021-02-05 …