早教吧作业答案频道 -->数学-->
已知函数f(x)=xex-alnx,曲线y=f(x)在点(1,f(1))处的切线平行于x轴.(Ⅰ)求f(x)的单调区间;(Ⅱ)证明:b≤e时,f(x)≥b(x2-2x+2).
题目详情
已知函数f(x)=xex-alnx,曲线y=f(x)在点(1,f(1))处的切线平行于x轴.
(Ⅰ)求f(x)的单调区间;
(Ⅱ)证明:b≤e时,f(x)≥b(x2-2x+2).
(Ⅰ)求f(x)的单调区间;
(Ⅱ)证明:b≤e时,f(x)≥b(x2-2x+2).
▼优质解答
答案和解析
(Ⅰ)函数f(x)=xex-alnx的导数为f′(x)=(x+1)ex-
,x>0,
依题意得f′(1)=0,即2e-a=0,解得a=2e.
所以f′(x)=(x+1)ex-
,显然f′(x)在(0,+∞)单调递增且f′(1)=0,
故当x∈(0,1)时,f′(x)<0;当x∈(1,+∞)时,f′(x)>0.
所以f(x)的递减区间为(0,1),递增区间为(1,+∞).
(Ⅱ)证明:①当b≤0时,由(Ⅰ)知,当x=1时,f(x)取得最小值为e.
又b(x2-2x+2)的最大值为b,故f(x)≥b(x2-2x+2);
②当0<b≤e时,设g(x)=xex-2elnx-b(x2-2x+2),
所以g′(x)=(x+1)ex-
-2b(x-1),
令h(x)=(x+1)ex-
-2b(x-1),x>0,
则h′(x)=(x+2)ex+
-2b,
当x∈(0,1)时,
-2b≥0,(x+2)ex>0,所以h′(x)>0;
当x∈(1,+∞)时,(x+2)ex-2b>0,
>0,所以h′(x)>0.
所以当x∈(0,+∞)时,h′(x)>0.,故h(x)在(0,+∞)上单调递增,
又h(1)=0,所以当x∈(0,1)时,g′(x)<0;
当x∈(1,+∞)时,g′(x)>0.
所以g(x)在(0,1)上单调递减,在(1,+∞)上单调递增,
所以当x=1时,g(x)取得最小值g(1)=e-b≥0,
所以g(x)≥0,即f(x)≥b(x2-2x+2).
综上,当b≤e时,f(x)≥b(x2-2x+2).
a |
x |
依题意得f′(1)=0,即2e-a=0,解得a=2e.
所以f′(x)=(x+1)ex-
2e |
x |
故当x∈(0,1)时,f′(x)<0;当x∈(1,+∞)时,f′(x)>0.
所以f(x)的递减区间为(0,1),递增区间为(1,+∞).
(Ⅱ)证明:①当b≤0时,由(Ⅰ)知,当x=1时,f(x)取得最小值为e.
又b(x2-2x+2)的最大值为b,故f(x)≥b(x2-2x+2);
②当0<b≤e时,设g(x)=xex-2elnx-b(x2-2x+2),
所以g′(x)=(x+1)ex-
2e |
x |
令h(x)=(x+1)ex-
2e |
x |
则h′(x)=(x+2)ex+
2e |
x2 |
当x∈(0,1)时,
2e |
x2 |
当x∈(1,+∞)时,(x+2)ex-2b>0,
2e |
x2 |
所以当x∈(0,+∞)时,h′(x)>0.,故h(x)在(0,+∞)上单调递增,
又h(1)=0,所以当x∈(0,1)时,g′(x)<0;
当x∈(1,+∞)时,g′(x)>0.
所以g(x)在(0,1)上单调递减,在(1,+∞)上单调递增,
所以当x=1时,g(x)取得最小值g(1)=e-b≥0,
所以g(x)≥0,即f(x)≥b(x2-2x+2).
综上,当b≤e时,f(x)≥b(x2-2x+2).
看了 已知函数f(x)=xex-a...的网友还看了以下:
一道简单的二阶导数和一道简单的不定积分1,设f"(x)存在,证明lim(h->0)[f(x0+h) 2020-05-13 …
求两函数极限区间的题目1.设f(x)在[0,2a]上连续且发f(0)=f(2a)证明:至少存在一点 2020-06-05 …
x∈R,F(x)满足F(xy)=F(x)+F(y),证明F(x)为偶函数如何证明? 2020-06-14 …
1.设f(x)在[0,1]上连续,且f(0)=f(1),证明:存在x0∈[0,1],使得f(x0) 2020-06-18 …
设a是f(z)的孤立奇点,证明;若f(z)为奇函数,则Res[f(z),a]=Res[f(z),- 2020-06-26 …
高等数学题:设映射f:X→Y,A是X的子集,记f(A)的原像为f(^-1)(f(A)).证明:(1 2020-07-13 …
几道高数题,1.求lim(n→∞)sin^2(∏√(n^2+n))2.设f(x)在[a,+∞)上连 2020-07-31 …
证明题:如果y=f(x)在x0处可导,那么lim(h->0)[f(x0+h)-f(x0-h)]/2 2020-08-01 …
证明题(本大题5分)1.设f(x)在[0,1]上连续,且f(0)=0,f(1)=1.证明:至少存在 2020-08-01 …
f(x+y)=f(x)+f(y),证明f(x)是正比例函数已知函数f(x)定义域为[-1,1],若 2020-08-03 …