早教吧作业答案频道 -->数学-->
证明题:如果y=f(x)在x0处可导,那么lim(h->0)[f(x0+h)-f(x0-h)]/2h=f'(x0).证明逆定理全题:如果y=f(x)在x0处可导,那么lim(h->0)[f(x0+h)-f(x0-h)]/2h=f'(x0).反之,如果lim(h->0)[f(x0+h)-f(x0-h)]/2h存在,那么f'(x0)
题目详情
证明题:如果y=f(x)在x0处可导,那么lim(h->0)[f(x0+h)-f(x0-h)]/2h=f'(x0).证明逆定理
全题:如果y=f(x)在x0处可导,那么lim(h->0)[f(x0+h)-f(x0-h)]/2h=f'(x0).反之,如果lim(h->0)[f(x0+h)-f(x0-h)]/2h存在,那么f'(x0)是否一定存在? 求过程 越想越好 谢谢各位大神啦啦~~
全题:如果y=f(x)在x0处可导,那么lim(h->0)[f(x0+h)-f(x0-h)]/2h=f'(x0).反之,如果lim(h->0)[f(x0+h)-f(x0-h)]/2h存在,那么f'(x0)是否一定存在? 求过程 越想越好 谢谢各位大神啦啦~~
▼优质解答
答案和解析

看了 证明题:如果y=f(x)在x...的网友还看了以下: