早教吧作业答案频道 -->数学-->
已知函数f(x)=alnx/x+1+b/x曲线f(x)在点(1,f(1))出的切线方程为x+2y-3=0 ,求a b的值(2) 证明当x>0且x≠1时,f(x)> lnx/x-1
题目详情
已知函数f(x)=alnx/x+1+b/x曲线f(x)在点(1,f(1))出的切线方程为x+2y-3=0 ,求a b的值
(2) 证明当x>0且x≠1时,f(x)> lnx/x-1
(2) 证明当x>0且x≠1时,f(x)> lnx/x-1
▼优质解答
答案和解析
(1)
切线方程变形为 y=(-1/2)x+3/2,
可见斜率k=-1/2, f(1)=1
f(x)=alnx/(x+1)+b/x,
f'(x)=[a(x+1)/x-alnx]/(x+1)^2-b/x^2
已知k=f'(1)=(2a)/4-b=-1/2 即a-2b=-1 (*)
f(1)=b=1
代入(*)得 a=1
∴f(x)=lnx/(x+1)+1/x
(2)
由(1)知f(x)=lnx/(x+1)+1/x
所以f(x)-lnx/(x-1)
= lnx/(x+1)+1/x-lnx/(x-1)
=-2 lnx/﹙x²-1﹚+1/x
=[1/(1-x²)]*[(2lnx-﹙x²-1﹚/x)]
令h(x)=2lnx-﹙x²-1﹚/x(x>0),
h′(x)=2/x-[2x²-(x²-1)]/x²=-(x-1)²/x²
所以当x≠1时,h′(x)<0,所以函数单调递减,而h(1)=0,
当x∈(0,1)时,h(x)>h(1)=0
此时1/(1-x²)>0,
可得1/﹙1-x²﹚*h(x)>0;
x∈(1,+∞)时,h(x)<h(1)=0,
此时1/(1-x²)
切线方程变形为 y=(-1/2)x+3/2,
可见斜率k=-1/2, f(1)=1
f(x)=alnx/(x+1)+b/x,
f'(x)=[a(x+1)/x-alnx]/(x+1)^2-b/x^2
已知k=f'(1)=(2a)/4-b=-1/2 即a-2b=-1 (*)
f(1)=b=1
代入(*)得 a=1
∴f(x)=lnx/(x+1)+1/x
(2)
由(1)知f(x)=lnx/(x+1)+1/x
所以f(x)-lnx/(x-1)
= lnx/(x+1)+1/x-lnx/(x-1)
=-2 lnx/﹙x²-1﹚+1/x
=[1/(1-x²)]*[(2lnx-﹙x²-1﹚/x)]
令h(x)=2lnx-﹙x²-1﹚/x(x>0),
h′(x)=2/x-[2x²-(x²-1)]/x²=-(x-1)²/x²
所以当x≠1时,h′(x)<0,所以函数单调递减,而h(1)=0,
当x∈(0,1)时,h(x)>h(1)=0
此时1/(1-x²)>0,
可得1/﹙1-x²﹚*h(x)>0;
x∈(1,+∞)时,h(x)<h(1)=0,
此时1/(1-x²)
看了 已知函数f(x)=alnx/...的网友还看了以下:
函数f(x)的导函数为f′(x),对∀x∈R,都有2f′(x)>f(x)成立,若f(ln4)=2, 2020-06-08 …
若函数f(x)(f(x)≠0)为奇函数,则必有()A.f(x)•f(-x)>0B.f(x)•f(- 2020-06-09 …
高数导数题设f(x)在x0处可导,且x0处导数>0,则存在δ>0,使得a、f(x)在区间﹙x0﹣δ 2020-06-10 …
已知f(x)、g(x)都是定义在R上的函数,g(x)≠0,f(x)g(x)=ax,且f′(x)g( 2020-06-16 …
设函数f(x)对任意实数x,y都有f(x+y)=f(x)+f(y)且x>0时f(x)>0.1,证明 2020-07-13 …
(理做)如图所示,函数y=f(x)的图象由两条射线和三条线段组成,若∀x∈R,f(x)>f(x-2 2020-07-20 …
已知函数f(x)对任意实数x,y满足f(x)+f(y)=f(x+y)+2,当x>f(x)>2.(1 2020-08-01 …
已知f(x),g(x)都是定义在R上的函数,g(x)≠0,f(x)g′(x)>f′(x)g(x), 2020-08-02 …
如图所示,函数y=f(x)的图象由两条射线和三条线段组成,若∀x∈R,f(x)>f(x-1),则正实 2020-11-01 …
定义在R上的连续可导函数y=f(x),其导函数为y=f'(x),下列条件是“f(x)在R上单调递增” 2021-02-13 …