早教吧作业答案频道 -->数学-->
已知函数f(x)=x-1-alnx (a∈R).求证:f(x)≥0恒成立的充要条件是a=1②必要性f'(x)=1-a x =x-a x ,其中x>0(i)当a≤0时,f'(x)>0恒成立,所以函数f(x)在(0,+∞)上是增函数而f(1)=0,所以当x∈(0,
题目详情
已知函数f(x)=x-1-alnx (a∈R).求证:f(x)≥0恒成立的充要条件是a=1
②必要性
f'(x)=1-a x =x-a x ,其中x>0
(i)当a≤0时,f'(x)>0恒成立,所以函数f(x)在(0,+∞)上是增函数
而f(1)=0,所以当x∈(0,1)时,f(x)<0,与f(x)≥0恒成立相矛盾
∴a≤0不满足题意.
(ii)当a>0时,∵x>a时,f'(x)>0,所以函数f(x)在(a,+∞)上是增函数;
0<x<a时,f'(x)<0,所以函数f(x)在(0,a)上是减函数;
∴f(x)≥f(a)=a-a-alna
∵f(1)=0,所以当a≠1时,f(a)<f(1)=0,此时与f(x)≥0恒成立相矛盾
∴a=1
在上面证明必要性的过程中,“∵f(1)=0,所以当a≠1时,f(a)<f(1)=0,此时与f(x)≥0恒成立相矛盾”是什么意思?为什么a≠1时,有f(a)<f(1)?
②必要性
f'(x)=1-a x =x-a x ,其中x>0
(i)当a≤0时,f'(x)>0恒成立,所以函数f(x)在(0,+∞)上是增函数
而f(1)=0,所以当x∈(0,1)时,f(x)<0,与f(x)≥0恒成立相矛盾
∴a≤0不满足题意.
(ii)当a>0时,∵x>a时,f'(x)>0,所以函数f(x)在(a,+∞)上是增函数;
0<x<a时,f'(x)<0,所以函数f(x)在(0,a)上是减函数;
∴f(x)≥f(a)=a-a-alna
∵f(1)=0,所以当a≠1时,f(a)<f(1)=0,此时与f(x)≥0恒成立相矛盾
∴a=1
在上面证明必要性的过程中,“∵f(1)=0,所以当a≠1时,f(a)<f(1)=0,此时与f(x)≥0恒成立相矛盾”是什么意思?为什么a≠1时,有f(a)<f(1)?
▼优质解答
答案和解析
当a>0时,∵x>a时,f'(x)>0,所以函数f(x)在(a,∞)上是增函数;
0<x<a时,f'(x)<0,所以函数f(x)在(0,a)上是减函数;
∴f(x)≥f(a)=a-a-alna
由导数知f(a)为最小值
0<x<a时,f'(x)<0,所以函数f(x)在(0,a)上是减函数;
∴f(x)≥f(a)=a-a-alna
由导数知f(a)为最小值
看了 已知函数f(x)=x-1-a...的网友还看了以下:
已知函数F(x)=(1-1/x)^(2x)求证:F'(0-)=正无限,F’(1)=0貌似不好搞啊, 2020-05-17 …
设a>0,a≠1函数f(x)=loga(x-3)/(x+3),令g(x)与f(x)定义域公共部/为 2020-05-20 …
已知fx=x(lnx-1),Fx=fx-af(1/x),a>0求1函数fx的单调区间2求实数a的取 2020-06-06 …
根号里的可以=0,为什么指数函数底数不可以=0要使√a有意义,只要a≥0就可以了,这里a可以等于0 2020-06-11 …
函数y=√x(x-1)+√x的定义域为()答案上的解析是:要使函数有意义,必须{x(x-1)≥0, 2020-06-25 …
区域{(x,y)|x>0,y>0,xy=1},函数f(x,y)=x+y/[x][y]+[x]+[y 2020-07-22 …
构造定义域[0,1],值域[0,∞)的增函数构造一个函数,要求定义域[0,1],值域[0,∞),增 2020-07-26 …
要说一个函数有零点是不是判别式大于等于0?要说函数的零点是是填坐标还是数? 2020-08-01 …
已知f(x)为定义在[-1,1]上的奇函数,且当x∈(0,1]时,f(x)=2x4x+1.(1)试用 2020-12-08 …
考察以下命题:①若|a|<1,则无穷数列{an}n∈N*,各项的和为aa−1②函数y=3x在R上连续 2021-02-13 …