早教吧作业答案频道 -->数学-->
如图,在平面直角坐标系中,直线AB与x轴交于点A,与y轴交于点B,与直线OC:y=x交于点C.(1)若直线AB解析式为y=-2x+12,①求点C的坐标;②求△OAC的面积.(2)如图,作∠AOC的平分线ON,若AB⊥ON,垂足为E,
题目详情
如图,在平面直角坐标系中,直线AB与x轴交于点A,与y轴交于点B,与直线OC:y=x交于点C.
(1)若直线AB解析式为y=-2x+12,
①求点C的坐标;
②求△OAC的面积.
(2)如图,作∠AOC的平分线ON,若AB⊥ON,垂足为E,△OAC的面积为6,且OA=4,P、Q分别为线段OA、OE上的动点,连接AQ与PQ,试探索AQ+PQ是否存在最小值?若存在,求出这个最小值;若不存在,说明理由.
(1)若直线AB解析式为y=-2x+12,
①求点C的坐标;
②求△OAC的面积.
(2)如图,作∠AOC的平分线ON,若AB⊥ON,垂足为E,△OAC的面积为6,且OA=4,P、Q分别为线段OA、OE上的动点,连接AQ与PQ,试探索AQ+PQ是否存在最小值?若存在,求出这个最小值;若不存在,说明理由.
▼优质解答
答案和解析
(1)①由题意,y=-2x+12,y=x
\x09解得x=4,y=4所以C(4,4)
\x09②令y=0,-2x+12=0,解得x=6,∴A(6,0)
∴OA=6
∴S△OAC=1/2×6×4=12
\x09
(2)由题意,在OC上截取OM=OP,连结MQ,
\x09∵OP平分,∴∠AOQ=∠COQ
\x09又OQ=OQ,∴△POQ≌△MOQ(SAS),
\x09∴PQ=MQ,∴AQ+PQ=AQ+MQ,
\x09当A、Q、M在同一直线上,且AM⊥OC时,AQ+MQ最小.
\x09即AQ+PQ存在最小值.
\x09∵AB⊥ON,所以,∠AEO=∠CEO
\x09∴△AEO≌△CEO(ASA),∴OC=OA=4,
\x09∵△OAC的面积为6,所以,AM=2×6÷4=3
\x09∴AQ+PQ存在最小值,最小值为3.
\x09解得x=4,y=4所以C(4,4)
\x09②令y=0,-2x+12=0,解得x=6,∴A(6,0)
∴OA=6
∴S△OAC=1/2×6×4=12
\x09
(2)由题意,在OC上截取OM=OP,连结MQ,
\x09∵OP平分,∴∠AOQ=∠COQ
\x09又OQ=OQ,∴△POQ≌△MOQ(SAS),
\x09∴PQ=MQ,∴AQ+PQ=AQ+MQ,
\x09当A、Q、M在同一直线上,且AM⊥OC时,AQ+MQ最小.
\x09即AQ+PQ存在最小值.
\x09∵AB⊥ON,所以,∠AEO=∠CEO
\x09∴△AEO≌△CEO(ASA),∴OC=OA=4,
\x09∵△OAC的面积为6,所以,AM=2×6÷4=3
\x09∴AQ+PQ存在最小值,最小值为3.
看了 如图,在平面直角坐标系中,直...的网友还看了以下:
已知直线7x+7y-28=0和x-y=0的交点为A.(1)求A的坐标(2)若l经过点A,且坐标原点 2020-05-16 …
已知圆x^2+y^2=9的圆心为o,点Q(a,b)在圆P外,以OQ为直径作圆M与圆O相交于A、B两 2020-06-09 …
(2013•黄冈)如图,AB为⊙O的直径,C为⊙O上一点,AD和过C点的直线互相垂直,垂足为D,且 2020-07-30 …
圆O与圆O'相交与A,B两点,过点B作CD垂直于AB,分别交圆O与圆O'于点C.D.(1)求证:A 2020-07-31 …
直线l:y=2x+m与椭圆x^2/2+y^2=1相交于A、B两点;...♨1)若m=1,求弦AB的 2020-08-01 …
已知椭圆C:x2+2y2=4,(1)求椭圆C的离心率(2)设O为原点,若点A在椭圆C上,点B在已知 2020-08-01 …
如图,已知直线y1=2x-3与y2=-x+3,在平面直角坐标系中相交于点P.(1)求点P的坐标;(2 2020-11-01 …
如图,AB是⊙O的直径,BD是⊙O的弦,延长BD到点C,使DC=BD,连结AC,过点D作DE⊥AC, 2020-11-26 …
(2011•海曙区模拟)如图,AB为⊙O的直径,点D、E位于AB两侧的圆上,且∠AED=45°,过点 2020-11-26 …
已知圆O:x2+y2=4内一点P(0,1),过点P的直线l交圆O于A,B两点,且满足AP=λPB(λ 2020-12-05 …