早教吧作业答案频道 -->数学-->
如图,在平面直角坐标系中,直线AB与x轴交于点A,与y轴交于点B,与直线OC:y=x交于点C.(1)若直线AB解析式为y=-2x+12,①求点C的坐标;②求△OAC的面积.(2)如图,作∠AOC的平分线ON,若AB⊥ON,垂足为E,
题目详情
如图,在平面直角坐标系中,直线AB与x轴交于点A,与y轴交于点B,与直线OC:y=x交于点C.
(1)若直线AB解析式为y=-2x+12,
①求点C的坐标;
②求△OAC的面积.
(2)如图,作∠AOC的平分线ON,若AB⊥ON,垂足为E,△OAC的面积为6,且OA=4,P、Q分别为线段OA、OE上的动点,连接AQ与PQ,试探索AQ+PQ是否存在最小值?若存在,求出这个最小值;若不存在,说明理由.
(1)若直线AB解析式为y=-2x+12,
①求点C的坐标;
②求△OAC的面积.
(2)如图,作∠AOC的平分线ON,若AB⊥ON,垂足为E,△OAC的面积为6,且OA=4,P、Q分别为线段OA、OE上的动点,连接AQ与PQ,试探索AQ+PQ是否存在最小值?若存在,求出这个最小值;若不存在,说明理由.
▼优质解答
答案和解析
(1)①由题意,y=-2x+12,y=x
\x09解得x=4,y=4所以C(4,4)
\x09②令y=0,-2x+12=0,解得x=6,∴A(6,0)
∴OA=6
∴S△OAC=1/2×6×4=12
\x09
(2)由题意,在OC上截取OM=OP,连结MQ,
\x09∵OP平分,∴∠AOQ=∠COQ
\x09又OQ=OQ,∴△POQ≌△MOQ(SAS),
\x09∴PQ=MQ,∴AQ+PQ=AQ+MQ,
\x09当A、Q、M在同一直线上,且AM⊥OC时,AQ+MQ最小.
\x09即AQ+PQ存在最小值.
\x09∵AB⊥ON,所以,∠AEO=∠CEO
\x09∴△AEO≌△CEO(ASA),∴OC=OA=4,
\x09∵△OAC的面积为6,所以,AM=2×6÷4=3
\x09∴AQ+PQ存在最小值,最小值为3.
\x09解得x=4,y=4所以C(4,4)
\x09②令y=0,-2x+12=0,解得x=6,∴A(6,0)
∴OA=6
∴S△OAC=1/2×6×4=12
\x09
(2)由题意,在OC上截取OM=OP,连结MQ,
\x09∵OP平分,∴∠AOQ=∠COQ
\x09又OQ=OQ,∴△POQ≌△MOQ(SAS),
\x09∴PQ=MQ,∴AQ+PQ=AQ+MQ,
\x09当A、Q、M在同一直线上,且AM⊥OC时,AQ+MQ最小.
\x09即AQ+PQ存在最小值.
\x09∵AB⊥ON,所以,∠AEO=∠CEO
\x09∴△AEO≌△CEO(ASA),∴OC=OA=4,
\x09∵△OAC的面积为6,所以,AM=2×6÷4=3
\x09∴AQ+PQ存在最小值,最小值为3.
看了 如图,在平面直角坐标系中,直...的网友还看了以下:
如图,已知直线l:y=(-根号3/3)x+根号3交x轴于点A,交y轴于点B,将三角形AOB沿直线l 2020-05-13 …
如图 已知 直线l∶y=-√3x÷3+√3交x轴于点A 交y轴于点B 将△AOB沿直线l翻折 点如 2020-05-16 …
如图,△AOB为等腰直角三角形,斜边OB在x轴上,一次函数y=3x-4的图像经过点A,交y轴于点C 2020-05-17 …
已知:以点C(t,t/2)(t属于R且不等于O)为圆心的圆与x轴交与O,A,与y轴相交与点O,B, 2020-06-06 …
过定点(2,1)的直线L交x轴正半轴于A,交y轴的正半轴于B,O点为坐标原点,则三角形AOB的周长 2020-06-27 …
公切线已知圆O1与圆O2外切于点O已知圆O1与圆O2外切于点O,其半径之比为1:3,以直线O1O2 2020-07-31 …
已知以点C(t,2/t)),(t>0)为圆心的圆与与X轴交与O,A,与Y轴交与点O,B其中O为坐标 2020-08-02 …
如图,在平面直角坐标系中,直线y=2x+2交x轴于点A,交y轴于点B,将三角形AoB绕原点o顺时针 2020-08-02 …
如图,已知直线l:y=(-根号3/3)x+根号3交x轴于点A,交y轴于点B,将三角形AOB沿直线l翻 2020-11-01 …
在平面直角坐标系中,o是坐标原点,矩形oabc的位置如图所示,点A,C的坐标分别为(10,0),(0 2020-12-25 …