早教吧作业答案频道 -->数学-->
若函数可导,则导函数连续命题:若f(x)在I上可导,则其导函数连续.证明:在x0临近取一点x,在区间〔x0,x〕或〔x,x0〕上,f(x)满足拉格朗日中值定理的条件,由此得(f(x)-f(x0))/(X-X0)=f’(a),a在x
题目详情
若函数可导,则导函数连续
命题:若f(x)在I上可导,则其导函数连续.
证明:在x0临近取一点x,在区间〔x0,x〕或〔x,x0〕上,f(x)满足拉格朗日中值定理的条件,由此得 ( f(x)-f(x0) )/( X-X0 )=f’(a),a在x与x0之间
由于当 x→x0-时,a→x0-,所以上式两边令x→x0-取极限,
lim( f(x)-f(x0) )/(x-x0) (x→x0-) = lim f‘(a)(a→x0-)=lim f’(x)
(x→x0-)
即左导数= limf’(x) (x→x0-)
同理,右导数=limf’(x) (x→x0+)
因为f(x)在x0可导,所以左导数=右导数=f’(x0)
所以limf’(x) ( x→x0-)= limf’(x) (x→x0+)= f’(x0)
所以f’(x)连续
命题是错的,但证明错在哪?
命题:若f(x)在I上可导,则其导函数连续.
证明:在x0临近取一点x,在区间〔x0,x〕或〔x,x0〕上,f(x)满足拉格朗日中值定理的条件,由此得 ( f(x)-f(x0) )/( X-X0 )=f’(a),a在x与x0之间
由于当 x→x0-时,a→x0-,所以上式两边令x→x0-取极限,
lim( f(x)-f(x0) )/(x-x0) (x→x0-) = lim f‘(a)(a→x0-)=lim f’(x)
(x→x0-)
即左导数= limf’(x) (x→x0-)
同理,右导数=limf’(x) (x→x0+)
因为f(x)在x0可导,所以左导数=右导数=f’(x0)
所以limf’(x) ( x→x0-)= limf’(x) (x→x0+)= f’(x0)
所以f’(x)连续
命题是错的,但证明错在哪?
▼优质解答
答案和解析
回复2楼
证明了 limf’(x) ( x→x0-)= limf’(x) (x→x0+)= f’(x0),就是导函数在x0的极限值=函数值,所以连续,与“f(X0+△x)-f(X0) 在△x趋于0 时 等于0”是等价的
证明了 limf’(x) ( x→x0-)= limf’(x) (x→x0+)= f’(x0),就是导函数在x0的极限值=函数值,所以连续,与“f(X0+△x)-f(X0) 在△x趋于0 时 等于0”是等价的
看了若函数可导,则导函数连续命题:...的网友还看了以下:
已知函数f(x)=a㏑x+x2(a为实常数)(1)若a=-2,求证:函数f(x)在(1,+∽)上是 2020-05-13 …
函数f(x)=x^2-4x+c与函数g(x)=x+a/x在区间(0,+∞)上的同一点处有相同的最小 2020-05-13 …
下列说法正确的是:1.函数f(x)在两个区间A,B上都是单调减函数,则函数f(x)在AUB上也是单 2020-05-14 …
已知函数F[X]=a-1/|x|求证函数在0,正无穷上是增函数已知函数F[X]为R上的奇函数,当X 2020-06-03 …
设函数f(x)在(a,+∞)上可导,limf'(x)=0,求证:limf(x)/x=0不要使用罗比 2020-06-12 …
f(x),g(x),h(x)在[a,b]上连续,(a,b)上可导,求证存在一个e属于(a,b)使得 2020-07-16 …
拉格朗日中值定理推广拉格朗日中值定理:若函数f(x)在区间[a,b]满足以下条件:(1)在[a,b] 2020-11-22 …
f(x)f(-x)-f(x)在函数中分别是什么意思f(x)怎样变换成f(-x)-f(x) 2021-01-07 …
若函数可导,则导函数连续命题:若f(x)在I上可导,则其导函数连续.证明:在x0临近取一点x,在区间 2021-02-13 …
数学判断题1.函数y=sinx-x在区间上的最大值是0().2.函数在x0处连续,且x0为f(x)的 2021-02-13 …