早教吧作业答案频道 -->数学-->
若函数可导,则导函数连续命题:若f(x)在I上可导,则其导函数连续.证明:在x0临近取一点x,在区间〔x0,x〕或〔x,x0〕上,f(x)满足拉格朗日中值定理的条件,由此得(f(x)-f(x0))/(X-X0)=f’(a),a在x
题目详情
若函数可导,则导函数连续
命题:若f(x)在I上可导,则其导函数连续.
证明:在x0临近取一点x,在区间〔x0,x〕或〔x,x0〕上,f(x)满足拉格朗日中值定理的条件,由此得 ( f(x)-f(x0) )/( X-X0 )=f’(a),a在x与x0之间
由于当 x→x0-时,a→x0-,所以上式两边令x→x0-取极限,
lim( f(x)-f(x0) )/(x-x0) (x→x0-) = lim f‘(a)(a→x0-)=lim f’(x)
(x→x0-)
即左导数= limf’(x) (x→x0-)
同理,右导数=limf’(x) (x→x0+)
因为f(x)在x0可导,所以左导数=右导数=f’(x0)
所以limf’(x) ( x→x0-)= limf’(x) (x→x0+)= f’(x0)
所以f’(x)连续
命题是错的,但证明错在哪?
命题:若f(x)在I上可导,则其导函数连续.
证明:在x0临近取一点x,在区间〔x0,x〕或〔x,x0〕上,f(x)满足拉格朗日中值定理的条件,由此得 ( f(x)-f(x0) )/( X-X0 )=f’(a),a在x与x0之间
由于当 x→x0-时,a→x0-,所以上式两边令x→x0-取极限,
lim( f(x)-f(x0) )/(x-x0) (x→x0-) = lim f‘(a)(a→x0-)=lim f’(x)
(x→x0-)
即左导数= limf’(x) (x→x0-)
同理,右导数=limf’(x) (x→x0+)
因为f(x)在x0可导,所以左导数=右导数=f’(x0)
所以limf’(x) ( x→x0-)= limf’(x) (x→x0+)= f’(x0)
所以f’(x)连续
命题是错的,但证明错在哪?
▼优质解答
答案和解析
回复2楼
证明了 limf’(x) ( x→x0-)= limf’(x) (x→x0+)= f’(x0),就是导函数在x0的极限值=函数值,所以连续,与“f(X0+△x)-f(X0) 在△x趋于0 时 等于0”是等价的
证明了 limf’(x) ( x→x0-)= limf’(x) (x→x0+)= f’(x0),就是导函数在x0的极限值=函数值,所以连续,与“f(X0+△x)-f(X0) 在△x趋于0 时 等于0”是等价的
看了若函数可导,则导函数连续命题:...的网友还看了以下:
提先谢谢了,越快越好1.求下列函数的值:(1)已知f(x)=|x-2|分之x+1,求f(0),f( 2020-04-27 …
(2010•郑州二模)已知函数f(x)满足f(x)=f(π-x),且当x∈(-π2,π2)时,f( 2020-05-14 …
定义在R上的函数y=f(x),满足f(x+2)=-1/f(x),则().A.f(x)不是周期函数B 2020-06-03 …
14.对任意x属于R,函数f(x)满足f(x+1)={√f(x)-[f(x)]^2}+1/2,设a 2020-06-24 …
设函数f(x)=x^2+ax+bcosx(a,b∈R),集合A={x∣f(x)=0,x∈R},B={ 2020-11-01 …
函数y=f(x),则f(x+1)-f(x)称为f(x)在x处的一阶差分,记作△y,对于△y在x处的一 2020-11-01 …
对于正数x,规定f(x)=x/(1+x),例如f(3)=3/(1+3)=3/4,f(1/3)=(1/ 2020-11-06 …
已知函数f(x)对于任意x,y属于R,总有f(x+y)=f(x)+f(y)-1,X>0时.已知函数f 2020-12-22 …
f(x+1)=-f(1-x)变换:把f(x)往右平移一个单位所以原来的等式变成了f(x)=-f(x+ 2021-01-07 …
对于f(x)中f表示对应关系,那么(x)的含义是什么还有下面这句话应如何理解:函数f(x)对于任何实 2021-01-15 …