早教吧作业答案频道 -->数学-->
设F(x)=(f(x)-f(a))/(x-a),(x>a)其中f(x)在[a,+∞)上连续,f''(x)在(a,+∞)内存在且大于0,求证F(x)在(a,+∞)内单调递增.
题目详情
设F(x)=(f(x)-f(a))/(x-a),(x>a)其中f(x)在[a,+∞)上连续,f''(x)在(a,+∞)内存在且大于0,求证F(x)
在(a,+∞)内单调递增.
在(a,+∞)内单调递增.
▼优质解答
答案和解析
题目错了吧,那就那样的已知条件得不出这个结论的.可以举一个反例.
f(x)=√x, 显然满足:
f(x)在[a,+∞)上连续,f''(x)在(a,+∞)内存在且大于0
但是
F(x)=(√x-√a)/(x-a)=1/(√x+√a) 是减函数.
好吧,题目没看清,那里是二阶导,还以为是一阶呢,二阶导就对了.
F'(x)=[(x-a)f'(x)-(f(x)-f(a))]/(x-a)^2
根据拉格朗日中值地理
f(x)-f(a)=f'(ξ)(x-a) ξ∈(a,x)
又f''(x)>0
所以
f'(x)>f'(ξ)
从而得到
F'(x)=[(x-a)f'(x)-(f(x)-f(a))]/(x-a)^2=F'(x)=(f'(x)-f'(ξ))/(x-a)>0
所以F(x) (a,+∞)递增
f(x)=√x, 显然满足:
f(x)在[a,+∞)上连续,f''(x)在(a,+∞)内存在且大于0
但是
F(x)=(√x-√a)/(x-a)=1/(√x+√a) 是减函数.
好吧,题目没看清,那里是二阶导,还以为是一阶呢,二阶导就对了.
F'(x)=[(x-a)f'(x)-(f(x)-f(a))]/(x-a)^2
根据拉格朗日中值地理
f(x)-f(a)=f'(ξ)(x-a) ξ∈(a,x)
又f''(x)>0
所以
f'(x)>f'(ξ)
从而得到
F'(x)=[(x-a)f'(x)-(f(x)-f(a))]/(x-a)^2=F'(x)=(f'(x)-f'(ξ))/(x-a)>0
所以F(x) (a,+∞)递增
看了 设F(x)=(f(x)-f(...的网友还看了以下:
下列描述合理的是()A.含氢氧化铁胶粒的分散系中可能大量存在H+,K+,S2-Br-B.高锰酸钾溶 2020-05-12 …
设f(x0在[a,b]单调连续,(a,b)可导,a=f(a)<f(b)=b求证:存在ξi∈(a,b 2020-05-14 …
直线y=3x+3交x轴于点A,交y轴于B点,过A、B两点的抛物线交X轴于另一点C(3,0)问:在第 2020-05-16 …
某溶液可能含有下列阴离子硫酸根离子,碳酸根离子,氯离子1.当溶液中存在大量氢离子,溶液中不能大量存 2020-05-16 …
(2/3)不断改变角A的大小,使这个四边形的形状发生变化时,他发现角B与角C的大小存在着一个规律, 2020-06-04 …
设函数f(x),g(x)在[a,b]上内二阶可导且存在相等的最大值,又f(a)=g(a),f(b) 2020-06-16 …
(2014•山东)下列有关溶液组成的描述合理的是()A.无色溶液中可能大量存在Al3+、NH4+、 2020-06-25 …
下列关于离子共存或离子反应的说法正确的是()A.某无色溶液中可能大量存在H+、、B.的溶液中可能大 2020-07-25 …
a.若Xo为f(x)的极点,则必有f'(Xo)=0b.若f'(Xo)=0,则Xo必为f(x)的极值 2020-07-31 …
设函数f(x),g(x)在[a,b]上内二阶可导且存在相等的最大值,又f(a)=g(a),f(b)= 2020-11-24 …