早教吧 育儿知识 作业答案 考试题库 百科 知识分享

已知函数f(x)=x²+3x|x-a|,其中a∈R,(1)当a>0时,方程f(x)=3恰有三个根,求实数a的取值范围;已知函数f(x)=x²+3x|x-a|,其中a∈R,(1)当a>0时,方程f(x)=3恰有三个根,求实数a的

题目详情
已知函数f(x)=x²+3x|x-a|,其中a∈R,(1)当a>0时,方程f(x)=3恰有三个根,求实数a的取值范围;
已知函数f(x)=x²+3x|x-a|,其中a∈R,(1)当a>0时,方程f(x)=3恰有三个根,求实数a的取值范围。
求详解,要步骤。谢谢
▼优质解答
答案和解析
三个解,则xx≥a
则f(x)=4x²-3ax
令g(x)=4x²-3ax-3
g'(x)=8x-3a
因为x≥a>0
所以g'(x)>0
递增
所以g(x)最小=g(a)=a²-3
因为这一边不能无解
所以a²-3≤0
0若a=√3
则x≥a时有两解
所以x此时f(x)=-2x²+3√3x=3
2x²-3√3x+3=0
x=2√3,x=√3
不符合x舍去
所以0此时f(x)=-2x²+3ax=3有两解
2x²-3ax+3=0
x1+x2=3a/2
x1x2=3/2
且x1-a<0,x2-a<0
所以x1-a+x2-a<0
3a/2-2a<0
a>0
且(x1-a)(x2-a)>0
x1x2-(x1+x2)+a²=3/2-3a/2+a²>0
这个恒成立
综上
0
作业帮用户 2017-05-01