早教吧作业答案频道 -->数学-->
在正方形ABCD中,点E在线段BC上(点E不与点B、C重合),连接AE,过点E作AE的垂直交直线DC于F,交直线AB于G.如图①,当点E为BC边中点时,易证;CF+BG=EB.当点E不为BC边中点时,如图②,图③
题目详情
在正方形ABCD中,点E在线段BC上(点E不与点B、C重合),连接AE,过点E作AE的垂直交直线DC于F,交直线AB于G.如图①,当点E为BC边中点时,易证;CF+BG=EB.当点E不为BC边中点时,如图②,图③两种情况下,上述结论是否成立,若成立,请给予证明;若不成立,线段CF、BG、EB之间有怎样的数量关系,写出你的猜想,不需证明.


▼优质解答
答案和解析
(1)CF+BG=BE,成立
证明:如图①,过点F作FH⊥AB于H,交AE于M,
∴四边形FHBC为矩形,
∴FH=BC=AB,FC=HB,
∵正方形ABCD,AE⊥FG,
∴∠ABC=∠AEF=90°,
∵∠AMH=∠FME,
∴∠EAB=∠HFG,
在△ABE和△FHG中
,
∴△ABE≌△FHG,
∴HG=BE,
CF+BG=BE.
(2)CF+BG=BE,
证明:如图②,
过点F作FH⊥AB于H,交AE于M,
∴四边形FHBC为矩形,
∴FH=BC=AB,FC=HB,
∵正方形ABCD,AE⊥FG,
∴∠ABC=∠AEF=90°,
∵∠AMH=∠FME,
∴∠EAB=∠HFG,
在△ABE和△FHG中
,
∴△ABE≌△FHG,
∴HG=BE,
CF+BG=BE.
(3)如图③的猜想是BG-CF=BE.
证明:如图①,过点F作FH⊥AB于H,交AE于M,
∴四边形FHBC为矩形,
∴FH=BC=AB,FC=HB,

∵正方形ABCD,AE⊥FG,
∴∠ABC=∠AEF=90°,
∵∠AMH=∠FME,
∴∠EAB=∠HFG,
在△ABE和△FHG中
|
∴△ABE≌△FHG,
∴HG=BE,
CF+BG=BE.
(2)CF+BG=BE,
证明:如图②,
过点F作FH⊥AB于H,交AE于M,
∴四边形FHBC为矩形,
∴FH=BC=AB,FC=HB,
∵正方形ABCD,AE⊥FG,
∴∠ABC=∠AEF=90°,
∵∠AMH=∠FME,
∴∠EAB=∠HFG,
在△ABE和△FHG中
|
∴△ABE≌△FHG,
∴HG=BE,
CF+BG=BE.
(3)如图③的猜想是BG-CF=BE.
看了在正方形ABCD中,点E在线段...的网友还看了以下:
圆锥曲线的已知椭圆C:x^2/2+y^2=1的右焦点为F,右准线为l,点A属于l,线段AF交C于点 2020-04-08 …
在平面直角坐标系xoy中,已知c:x^2/3+y^2=1,斜率为k(k>0)且不过原点的直线L交椭 2020-05-13 …
已知椭圆C:(a>b>0)的长轴长为4,焦距为2.(I)求椭圆C的方程;(Ⅱ)过动点M(0,m)( 2020-05-15 …
在平面直角坐标系xOy中,已知椭圆C:,如图所示,斜率为k(k>0)且不过原点的直线l交椭圆C于A 2020-06-08 …
在直角坐标系xOy中,直线l:y=t(t≠0)交y轴于点M,交抛物线C:y2=2px(p>0)于点 2020-06-15 …
如图点F1(-c,0)F2(c,0)分别是椭圆C(a>b>0)的左右焦点,点F1(-c,0)F2 2020-06-21 …
已知抛物线C:x2=2py(p>0)的焦点为F,过F的直线l交抛物线C于点A,B,当直线l的倾斜角 2020-07-31 …
如图1,在平面直角坐标系中,矩形OABC的顶点A、C的坐标分别为A(5,0),C(0,3).射线y 2020-08-01 …
动手操作:小明利用等距平行线解决了二等分线段的问题.作法:(1)在e上任取一点C,以点C为圆心,A 2020-08-02 …
(2014•宿迁模拟)已知椭圆C:x2a2+y2b2=1(a>b>0),A,F分别为椭圆C的左顶点和 2020-11-12 …