早教吧作业答案频道 -->数学-->
在平面直角坐标系xoy中,已知c:x^2/3+y^2=1,斜率为k(k>0)且不过原点的直线L交椭圆c于A,B两点,线段AB的中点为E,射线OE交椭圆C于点G,交直线X=-3于点D(-3,M)(1)求M^2+K^2的最小值;(2)若OG^2=OD*OE,求证:直
题目详情
在平面直角坐标系xoy中,已知c:x^2/3+y^2=1,斜率为k(k>0)且不过原点的直线L交椭圆c于A,B两点,线段AB的中点为E,射线OE交椭圆C于点G,交直线X=-3于点D(-3,M)
(1)求M^2+K^2的最小值;
(2)若OG^2=OD*OE,求证:直线L过定点;
(1)求M^2+K^2的最小值;
(2)若OG^2=OD*OE,求证:直线L过定点;
▼优质解答
答案和解析
(1)、设L为:y=kx+b (b≠0) 则有:
x^2+3y^2=3 即:x^2+3(kx+b)^2=3
所以有:xA+xB=-6kb/(1+3k^2),yA+yB=2b/(1+3k^2)
射线OE交椭圆C于点G,交直线X=-3于点D(-3,M)
可得:
(yA+yB)/(xA+xB)=M/(-3)
得:kM=1
M^2+K^2≥2kM=2
所以:M^2+K^2的最小值为2.
(2)、易得:射线OE的方程为:y=-x/3k
得:x^2+x^2/3k^2=3 得:xG^2=9k^2/(1+3k^2)
yG^2=1/(1+3k^2)
则:OG^2=xG^2+yG^2=(9k^2+1)/(1+3k^2)
可得:点D为(-3,1/k)所以:OD^2=9+1/k^2=(9k^2+1)/k^2
即:OD=√ (9k^2+1)/k
根据(1)计算结果可得:OE=b√ (9k^2+1)/(1+3k^2)
因:OG^2=OD*OE, 所以:
(9k^2+1)/(1+3k^2)=(√ (9k^2+1)/k)[b√ (9k^2+1)/(1+3k^2)]
得:b/k=1
又L为:y=kx+b (b≠0) 则有:当y=0时,x=-b/k=-1
所以,直线过定点(-1,0)
x^2+3y^2=3 即:x^2+3(kx+b)^2=3
所以有:xA+xB=-6kb/(1+3k^2),yA+yB=2b/(1+3k^2)
射线OE交椭圆C于点G,交直线X=-3于点D(-3,M)
可得:
(yA+yB)/(xA+xB)=M/(-3)
得:kM=1
M^2+K^2≥2kM=2
所以:M^2+K^2的最小值为2.
(2)、易得:射线OE的方程为:y=-x/3k
得:x^2+x^2/3k^2=3 得:xG^2=9k^2/(1+3k^2)
yG^2=1/(1+3k^2)
则:OG^2=xG^2+yG^2=(9k^2+1)/(1+3k^2)
可得:点D为(-3,1/k)所以:OD^2=9+1/k^2=(9k^2+1)/k^2
即:OD=√ (9k^2+1)/k
根据(1)计算结果可得:OE=b√ (9k^2+1)/(1+3k^2)
因:OG^2=OD*OE, 所以:
(9k^2+1)/(1+3k^2)=(√ (9k^2+1)/k)[b√ (9k^2+1)/(1+3k^2)]
得:b/k=1
又L为:y=kx+b (b≠0) 则有:当y=0时,x=-b/k=-1
所以,直线过定点(-1,0)
看了 在平面直角坐标系xoy中,已...的网友还看了以下:
已知椭圆x28+y22=1上一点A(2,1)和该椭圆上两动点B、C,直线AB、AC的斜率分别为k1 2020-04-08 …
在平面直角坐标系xoy中,已知c:x^2/3+y^2=1,斜率为k(k>0)且不过原点的直线L交椭 2020-05-13 …
过两点A(-3,0),B(-3,6)的直线方程.这道题斜率K=0要怎么表述?X+3=0是他的直线方 2020-06-03 …
三角形三条边的斜率(k)的关系?请说明斜率用k表示不用tan请证明!不懂别胡说!可以证明! 2020-06-14 …
倾斜角的正余弦与斜率之间的关系是?解析几何扔下太久记不清了,在此请教.如果斜率记作k,倾斜角记作α 2020-06-16 …
方程x^2+k^2y^2=16表示焦点在x轴上椭圆,求k范围不是应该1>1/k麽 2020-06-29 …
一个斜率为√3/2的椭圆焦点在X轴有一条过右交点的直线交椭圆于A.B两点(A在下面)AF=3BF求 2020-07-31 …
设点P(x,y)是椭圆x225+y216=1上的点,且P的纵坐标y≠0,点A(-5,0),B(5,0 2020-12-31 …
这题谁能解出来呢?在xy的坐标内,直线k的斜率为负,直线k经过一点(-5,r),问如何能使直线k在x 2021-01-12 …
十万火急的数学问题(不用计算)(10分)关于直线方程X=MY+A可以包括直线的斜率存在或不存在的情况 2021-02-03 …