早教吧作业答案频道 -->数学-->
如图1,在平面直角坐标系中,矩形OABC的顶点A、C的坐标分别为A(5,0),C(0,3).射线y=kx交折线A-B-C于点P,点A关于OP的对称点为A′.(1)当点A′恰好在CB边上时,求CA′的长及k的值;(
题目详情
如图1,在平面直角坐标系中,矩形OABC的顶点A、C的坐标分别为A(5,0),C(0,3).射线y=kx交折线A-B-C于点P,点A关于OP的对称点为A′.
(1)当点A′恰好在CB边上时,求CA′的长及k的值;
(2)如图2,当点P在AB边上,点A′在CB上方时,连接A′O、A′P分别交CB边于点E、F.是否存在实数k使得△A′EF≌△BPF?若存在,求出k值;若不存在,说明理由;
(3)以OP为直径作 M,则 M与矩形OABC最多有几个公共点,直接写出公共点个数最多时k的取值范围.

(1)当点A′恰好在CB边上时,求CA′的长及k的值;
(2)如图2,当点P在AB边上,点A′在CB上方时,连接A′O、A′P分别交CB边于点E、F.是否存在实数k使得△A′EF≌△BPF?若存在,求出k值;若不存在,说明理由;
(3)以OP为直径作 M,则 M与矩形OABC最多有几个公共点,直接写出公共点个数最多时k的取值范围.

▼优质解答
答案和解析
(1)如图1,∵点A与A′关于OP成轴对称,
∴OP垂直平分A A′,
∴O A′=OA=5,P A′=PA,
在Rt△A′CO中,
A′C2=25-9=16,
∴A′C=4,
设PA=x,则P A′=x,
在Rt△A′BP中,A′P2=PB2+A′B2,即x2=(3-x)2+1,
解得:x=
,
把P(5,
)代入y=kx得:k=
;
(2)存在实数k使得△A′EF≌△BPF,
如图2,若△A′EF≌△BPF,则有AE′=BP,AF′=BF,EF=PF,
设PA=x,则有EB=A′P=x,A′E=BP=3-x,
∴OE=5-(3-x)=2+x,CE=5-x,
在Rt△ECO中,根据勾股定理得:OE2=CE2+OC2,即(2+x)2=(5-x)2+9,
解得:x=
,
把P(5,
)代入y=kx得:k=
;
(3)如图3,当0<k<
时,有4个共同点,
k=
或
时,有5个共同点,
k=
时,有4个共同点,
故最多有6个交点,k的取值范围是:
<k<
且k≠
.

∴OP垂直平分A A′,
∴O A′=OA=5,P A′=PA,
在Rt△A′CO中,
A′C2=25-9=16,
∴A′C=4,
设PA=x,则P A′=x,
在Rt△A′BP中,A′P2=PB2+A′B2,即x2=(3-x)2+1,

解得:x=
5 |
3 |
把P(5,
5 |
3 |
1 |
3 |
(2)存在实数k使得△A′EF≌△BPF,
如图2,若△A′EF≌△BPF,则有AE′=BP,AF′=BF,EF=PF,
设PA=x,则有EB=A′P=x,A′E=BP=3-x,
∴OE=5-(3-x)=2+x,CE=5-x,

在Rt△ECO中,根据勾股定理得:OE2=CE2+OC2,即(2+x)2=(5-x)2+9,
解得:x=
15 |
7 |
把P(5,
15 |
7 |
3 |
7 |
(3)如图3,当0<k<
11 |
60 |
k=
11 |
60 |
60 |
91 |
k=
3 |
5 |
故最多有6个交点,k的取值范围是:
11 |
60 |
60 |
91 |
3 |
5 |
看了 如图1,在平面直角坐标系中,...的网友还看了以下:
o为等边三角形abc的中心,射线oe交ab于点e,of交bc于点f.若三角形abc面积为s∠eof 2020-04-11 …
求扇形的面积,感激不尽.现在有一条边AB,AB长为5.45米,在AB的中间垂直画一条边CD.CD长 2020-04-24 …
如图,平行四边形ABCD 的对角线AC与BD相交于点0,直线EF过点0,且与AB、DC分别相交于点 2020-05-16 …
数学题几何踢边长为2的等边三角形OAB的顶点A在X轴的正半轴上,B点位于第一象限.将△OAB绕点0 2020-06-27 …
1.已知菱形ABCD的两条对角线相交于点0,对角线AC=8cm,菱形的面积为16cm平方.求菱形的 2020-06-28 …
在△ABC中,∠BAC=90°,AB=AC.(1)如图,若A,B两点的坐标分别是A(0,4),B( 2020-07-17 …
九分之一用小数表示是0.111111小数点后边无数个1九分之二用小数表示是0.22222小数点后边 2020-07-24 …
集合的势记集合A=(0,1),B=N+,f:把小数点和小数点前边的0去掉,然后把剩余数字最左边的0 2020-08-01 …
在平面直角坐标系中,O为原点,四边形ABCD为矩形,点A,C坐标分别为急,有悬赏!在平面直角坐标系中 2020-12-25 …
一道作业中的2011哈尔滨中考题,在平面直角坐标系中,点0是坐标原点,四边形ABCD为菱形,AB边在 2021-01-22 …