早教吧作业答案频道 -->数学-->
设A,B为n阶方阵,如果B可逆,且满足关系:A²+AB+B²=0,证明:A和(A+B)均可逆
题目详情
设A,B为n阶方阵,如果B可逆,且满足关系:A²+AB+B²=0,证明:A和(A+B)均可逆
▼优质解答
答案和解析
由B可逆知 |B| != 0
由 A²+AB+B²=0 得 A(A+B) = -B².
两边取行列式得 |A||A+B| = | -B² | = (-1)^n |B|² != 0
所以 |A| != 0 且 |A+B| != 0.
所以 A 与 A+B 都可逆.
由 A²+AB+B²=0 得 A(A+B) = -B².
两边取行列式得 |A||A+B| = | -B² | = (-1)^n |B|² != 0
所以 |A| != 0 且 |A+B| != 0.
所以 A 与 A+B 都可逆.
看了 设A,B为n阶方阵,如果B可...的网友还看了以下:
一道关于矩阵可逆性的证明题:n阶矩阵A,B和A+B都可逆,证明A^(-1)+B(-1)也可逆,并求 2020-04-05 …
设A,B为n阶矩阵,且E-AB可逆,证明E-BA设A,B为n阶矩阵,且E-AB可逆,证明E-BA也 2020-04-05 …
线代,A为n阶方阵A^2-2A-3E=0求(A^2+A+E)^-12.设AB均为正交矩阵|A|=- 2020-04-12 …
关于求逆的.设方阵A满足方程A的平方-A-2E=O(opq的o欧),证明:A及A+2E均可逆,并求 2020-04-27 …
一道线性代数可逆证明已知A和B都是n阶矩阵,且E-AB是可逆矩阵,证明E-BA可逆 2020-05-16 …
大家看看我这个矩阵的证明哪里有问题已知A,B为n阶方阵,且B=B^2,A=B+E,证明A可逆,并求 2020-06-09 …
例设方阵A满足A2-A-2I=O,证明:例设方阵A满足A2(平方)-A-2I=O,证明:(1)A和 2020-06-18 …
线性代数的问题已知A和B都为n阶矩阵.证明:1,AB的迹和BA的迹相等.2,若A或B可逆,求证AB 2020-06-19 …
线性代数的问题设A是三阶矩阵,且I+A,3I-A,I-3A均不可逆证明:(1)A是可逆矩阵(2)A 2020-07-25 …
设A,B为n阶方阵,且A,B,A+B均可逆,证明A的负一次方加B的负一次方可逆,并求其逆.求此题详 2020-08-01 …