早教吧作业答案频道 -->其他-->
设函数f(x)在[a,b]上三阶可导,证明:存在一点e∈(a,b),使得f(b)=f(a)+1/2(b-a)[f'(a)+f'(b)]-1/12(b-a)^3*f'''(e)
题目详情
设函数f(x)在[a,b]上三阶可导,证明:存在一点e∈(a,b),使得
f(b) = f(a) + 1/2 (b-a) [f'(a) + f'(b)] - 1/12 (b - a)^3 * f'''(e)
f(b) = f(a) + 1/2 (b-a) [f'(a) + f'(b)] - 1/12 (b - a)^3 * f'''(e)
▼优质解答
答案和解析
大部分就基于上楼的想法了,
f``(b)-f``(a)=(b-a)f```(e3)
f''(a)/2!((b-a)/2)² - f''(b)/2!((a-b)/2)²=-((b-a)/2)³f'''(e3)
f'''(e1)/3!((b-a)/2)³+f'''(e2)/3!((b-a)/2)³-((b-a)/2)³f'''(e3)=- f'''(e) ((b-a)/2)³/3
=(1/6+1/6-1)((b-a)/2)³ * f'''(e)=-1/12 (b - a)^3 * f'''(e)
f``(b)-f``(a)=(b-a)f```(e3)
f''(a)/2!((b-a)/2)² - f''(b)/2!((a-b)/2)²=-((b-a)/2)³f'''(e3)
f'''(e1)/3!((b-a)/2)³+f'''(e2)/3!((b-a)/2)³-((b-a)/2)³f'''(e3)=- f'''(e) ((b-a)/2)³/3
=(1/6+1/6-1)((b-a)/2)³ * f'''(e)=-1/12 (b - a)^3 * f'''(e)
看了 设函数f(x)在[a,b]上...的网友还看了以下:
随机过程题目:设X是一连续随机变量,具有分布F,证明:(a)F(x)服从(0,1)上的均匀分布随机 2020-04-13 …
已知f(X)=Lg1-X/1+X,a,b属于(-1,1)求证:f(a)+f(B)=F(A+B)/1 2020-05-22 …
求两函数极限区间的题目1.设f(x)在[0,2a]上连续且发f(0)=f(2a)证明:至少存在一点 2020-06-05 …
一道可能是关于中值问题的证明题f(x)在[a,b]上有三阶连续导数,f(a)=f(b)=0,证明: 2020-06-14 …
设映射f:X→Y,A,B都是X的子集,证明:f(A∩B)是f(A)∩f(B)的子集. 2020-07-08 …
一个整系数三次多项式f(x),有三个不同的整数a1a2a3,使f(a1)=f(a2)=f(a3)= 2020-07-09 …
一个函数和集合的问题设A、B是X的子集,且f:X→Y是函数.证明f(A∩B)是f(A)∩f(B)的 2020-07-29 …
设映射f:x→y,A属于X,B属于X证明证明f(A∪B)=f(A)∩f(B)f(A∩B)属于f(A 2020-07-30 …
f(x)在开区间(a,b)上连续,且limx→a+=-∞,limx→b-=-∞,证明:f(x)在开 2020-07-31 …
f(a)+f(b)=2f[(a+b)/2]*f[(a-b)/2]的奇偶性已知函数f(x)对于任意实 2020-08-01 …