早教吧作业答案频道 -->其他-->
已知函数fx=-x^2+ax-lnx(a∈R)(1)当a=3时,求函数fx在1/2,2是上当的最大值和最小值;(2)当函数在已知函数fx=-x^2+ax-lnx(a∈R)(1)当a=3时,求函数fx在1/2,2是上当的最大值和最小值;(2)当函数在1
题目详情
已知函数fx=-x^2+ax-lnx(a∈R) (1)当a=3时,求函数fx在【1/2,2】是上当的最大值和最小值; (2)当函数在
已知函数fx=-x^2+ax-lnx(a∈R)
(1)当a=3时,求函数fx在【1/2,2】是上当的最大值和最小值;
(2)当函数在【1/2,2】上单调时,求a的取值范围.
已知函数fx=-x^2+ax-lnx(a∈R)
(1)当a=3时,求函数fx在【1/2,2】是上当的最大值和最小值;
(2)当函数在【1/2,2】上单调时,求a的取值范围.
▼优质解答
答案和解析
f'(x) = -2x + a - 1/x = a- (2x + 1/x)
(1) 当a=3时,f'(x) = 3 - (2x + 1/x),f'(x)>0 的解为 (1/2,1)
所以 f(x)在[1/2,1]上单调增,在[1,2]上单调减,
求得 f(x)的最大值为f(1) = 2,最小值为 f(2)=2- ln2 .
(2) 即 f'(x) 在[1/2,2]上恒≥0,或恒≤0,
① 当 a- (2x + 1/x) ≥ 0,即 a ≥ (2x +1/x) 恒成立
由于 2x + 1/x 在 [1/2,2]上的最大值为 9/2 ,所以 a≥ 9/2 ;
② 当 a- (2x + 1/x) ≤ 0,即 a ≤ (2x +1/x) 恒成立
由于 2x + 1/x 在 [1/2,2]上的最小值为 2√2 ,所以 a≤ 2√2;
综上,a≥ 9/2 或 a≤2√2 .
(1) 当a=3时,f'(x) = 3 - (2x + 1/x),f'(x)>0 的解为 (1/2,1)
所以 f(x)在[1/2,1]上单调增,在[1,2]上单调减,
求得 f(x)的最大值为f(1) = 2,最小值为 f(2)=2- ln2 .
(2) 即 f'(x) 在[1/2,2]上恒≥0,或恒≤0,
① 当 a- (2x + 1/x) ≥ 0,即 a ≥ (2x +1/x) 恒成立
由于 2x + 1/x 在 [1/2,2]上的最大值为 9/2 ,所以 a≥ 9/2 ;
② 当 a- (2x + 1/x) ≤ 0,即 a ≤ (2x +1/x) 恒成立
由于 2x + 1/x 在 [1/2,2]上的最小值为 2√2 ,所以 a≤ 2√2;
综上,a≥ 9/2 或 a≤2√2 .
看了已知函数fx=-x^2+ax-...的网友还看了以下:
已知向量a=(1,根号3),向量b=(cos2x,sin2x),函数f(x)=向量a*向量b1.求 2020-04-11 …
函数f(x)=x²-2x+3在区间[0,m]上有最大值3,最小值2,则m的取值范围是已知函数f(x 2020-05-16 …
关于一道函数计算题,一.设函数y=x2+2ax+1在[-1,2]上最大值为g(a),求出:1)g9 2020-05-22 …
设函数f(x)=ax^3+bx+c(a≠0)为奇函数已知函数f(x)=ax^3+bx+c(a≠0) 2020-06-08 …
已知定义域为R的函数f(x)=a+2bx+3sinx+bxcosx2+cosx(a,b∈R)有最大 2020-06-12 …
函数最值问题函数fx在区间[a,b]满足f'x>0,则函数fx在[a,b]上的最大值和最小值函数f 2020-08-01 …
已知二次函数fx的最小值为1且f等于f2等于3.(1)求函数f(x)的解析式(2)记函数f(x)在区 2020-11-24 …
已知函数fx=-x^2+ax-lnx(a∈R)(1)当a=3时,求函数fx在1/2,2是上当的最大值 2020-12-03 …
1.对于任意实数x,函数f(x)=(5-a)x^2-6x+a+5恒为正值.求a的取值范围.2.已知函 2020-12-08 …
已知函数f(x)=x2+a|x-1|,a为常数.(1)当a=2时,求函数f(x)在[0,2]上的最小 2020-12-08 …