早教吧作业答案频道 -->其他-->
如图,已知:E是∠AOB的平分线上一点,EC⊥OB,ED⊥OA,C、D是垂足,连接CD.求证:﹙1﹚OD=OC. ﹙2﹚∠ECB=∠EDC. ﹙3﹚OE是CD的中垂线.(2)写错了,应该是∠ECD=∠EDC
题目详情
如图,已知:E是∠AOB的平分线上一点,EC⊥OB,ED⊥OA,C、D是垂足,连接CD.
求证:﹙1﹚OD=OC.
﹙2﹚∠ECB=∠EDC.
﹙3﹚OE是CD的中垂线.

(2)写错了,应该是∠ECD=∠EDC
求证:﹙1﹚OD=OC.
﹙2﹚∠ECB=∠EDC.
﹙3﹚OE是CD的中垂线.

(2)写错了,应该是∠ECD=∠EDC
▼优质解答
答案和解析
(1)OD=OC
∵点E是∠AOB的平分线上一点,EC⊥OA,ED⊥OB,垂足分别是C,D,
∴DE=CE,∠EOD=∠EOC,
在Rt△ODE与Rt△OCE中,
∵DE=CE,OE=OE,
∴Rt△ODE≌Rt△OCE,
∴OD=OC
(2)∠ECD=∠EDC
在△ODF与△OCF中,
∵OD=OC,∠EOD=∠EOC,OF=OF,
∴△ODF≌△OCF,
∴∠ODC=∠OCD,
∵∠ODE=∠OCE,
∴∠ECD=∠EDC
(3)OE是线段CD的垂直平分线
∵△ODF≌△OCF,
∴DF=CF,
∴OE是线段CD的垂直平分线
∵点E是∠AOB的平分线上一点,EC⊥OA,ED⊥OB,垂足分别是C,D,
∴DE=CE,∠EOD=∠EOC,
在Rt△ODE与Rt△OCE中,
∵DE=CE,OE=OE,
∴Rt△ODE≌Rt△OCE,
∴OD=OC
(2)∠ECD=∠EDC
在△ODF与△OCF中,
∵OD=OC,∠EOD=∠EOC,OF=OF,
∴△ODF≌△OCF,
∴∠ODC=∠OCD,
∵∠ODE=∠OCE,
∴∠ECD=∠EDC
(3)OE是线段CD的垂直平分线
∵△ODF≌△OCF,
∴DF=CF,
∴OE是线段CD的垂直平分线
看了 如图,已知:E是∠AOB的平...的网友还看了以下:
已知M是抛物线C:x^2=4y上的动点,过M作y轴的垂线MN,垂足为N,记线段MN的中点为E.(1 2020-04-13 …
已知M是抛物线C:x^2=4y上的动点,过M作y轴的垂线MN,垂足为N,记线段MN的中点为E.(1 2020-04-13 …
在△ABC中,过B,C分别作∠BAC的平分线的垂线,E,F为垂足,AD⊥BC于D,M为BC中点.求 2020-04-25 …
如图1,已知△ABC中,∠BAC=90度,AB=AC,AE是过A的一条直线,且点B,C在A,E的异 2020-06-05 …
如图,在三角形ABC中,角C等于2角B,D是BC上的一点,且AD垂直AB,点E是BD的中点,连接E 2020-06-27 …
已知圆M:x2+(y-2)2=1,直线l:y=-1,动圆P与圆M相外切,且与直线l相切.设动圆圆心 2020-07-25 …
在三角形ABC中,AD是BC边上的中线,角ADB=45度,角B=3角C,求证角BAC=90度真的看 2020-08-01 …
1.如图1,已知角ABC=45度,P为角ABC内部一点,PE//AB,PF//BC,分别交BC.BA 2020-11-03 …
已知AB为圆的直径,CD垂直AB与圆交于C,垂足为D,以C为圆心,CD为半径作圆与前圆交于EF,EF 2020-11-27 …
反比例函数数学题已知直线y=-0.75x上一点B,由点B分别向x轴、y轴作垂线,垂足为A、C,若点A 2020-11-28 …