早教吧作业答案频道 -->数学-->
已知椭圆C:x^2/a^2+y^2/b^2=1(a>b>0)的一个焦点为(√5,0)离心率为√5/3求;若动点P(xo,yo)为椭圆外一点,且点P到椭圆C的两条切线互相垂直,求点P的轨迹方程?
题目详情
已知椭圆C:x^2/a^2+y^2/b^2=1(a>b>0)的一个焦点为(√5,0)离心率为√5/3
求;若动点P(xo,yo)为椭圆外一点,且点P到椭圆C的两条切线互相垂直,求点P的轨迹方程?
求;若动点P(xo,yo)为椭圆外一点,且点P到椭圆C的两条切线互相垂直,求点P的轨迹方程?
▼优质解答
答案和解析
题中已知的是椭圆的已知的是椭圆的焦点
和离心率(a/c)=.也就是说,半焦距c =,半长轴a = 3,根据椭圆的性质,a²=b²+c²,可以知道b = 2,所以椭圆的标准方程是x²/9 +y²/4 =1.第一小问成功解决了.对于第二小问,已知的是椭圆外的动点到椭圆C的两条切线互相垂直,要求的是点P的轨迹方程.对于这类问题,一般的方法是联立椭圆和切线的方程,由于只有一个交点,消去x或y后,得到的一元二次方程根的判别式△必定等于0.两切线互相垂直,设它们的斜率分别为k1、k2,则k1•k2 = -1.
设过点的其中一条切线斜率为k,则切线的点斜式方程为y - y0 = k(x - x0) .联立切线方程与椭圆方程,消去y,得到关于x的一元二次方程
(4 + 9k²)x² +18k(y0 -kx0)x + 9[(kx -y0)²- 4] = 0
由于只有一个交点,所以此方程只有一个解,即
△ = [18k(y0 -kx0)]²-36(4 + 9k²)[(kx -y0)²- 4] = 0
一步步整理,得到
9k²(y0 -kx0)² - (4 + 9k²)[(kx -y0)²- 4] = 0
(4 + 9k²) - (y0 -kx0)² = 0 (*)
现在我们整理出了关于点P坐标(x0,y0)和斜率k的方程,我们只要要想办法消去参数k,就可以得到只含x0、y0的点P的轨迹方程.考虑到k1•k2 = -1,我们可以试着进一步整理(*)式,得到关于k的一元二次方程
(9 - x0²)k² + 2x0•y0•k + (4 -y0²) = 0
此时,应用韦达定理,我们可以消去k
k1•k2 = -1 = (4 -y0²)/(9 - x0²)
整理得到x0² + y0² = 13
所以点P的轨迹方程为x² + y² = 13
因为要参加说题比赛在用这道题做练习,刚刚做完!
和离心率(a/c)=.也就是说,半焦距c =,半长轴a = 3,根据椭圆的性质,a²=b²+c²,可以知道b = 2,所以椭圆的标准方程是x²/9 +y²/4 =1.第一小问成功解决了.对于第二小问,已知的是椭圆外的动点到椭圆C的两条切线互相垂直,要求的是点P的轨迹方程.对于这类问题,一般的方法是联立椭圆和切线的方程,由于只有一个交点,消去x或y后,得到的一元二次方程根的判别式△必定等于0.两切线互相垂直,设它们的斜率分别为k1、k2,则k1•k2 = -1.
设过点的其中一条切线斜率为k,则切线的点斜式方程为y - y0 = k(x - x0) .联立切线方程与椭圆方程,消去y,得到关于x的一元二次方程
(4 + 9k²)x² +18k(y0 -kx0)x + 9[(kx -y0)²- 4] = 0
由于只有一个交点,所以此方程只有一个解,即
△ = [18k(y0 -kx0)]²-36(4 + 9k²)[(kx -y0)²- 4] = 0
一步步整理,得到
9k²(y0 -kx0)² - (4 + 9k²)[(kx -y0)²- 4] = 0
(4 + 9k²) - (y0 -kx0)² = 0 (*)
现在我们整理出了关于点P坐标(x0,y0)和斜率k的方程,我们只要要想办法消去参数k,就可以得到只含x0、y0的点P的轨迹方程.考虑到k1•k2 = -1,我们可以试着进一步整理(*)式,得到关于k的一元二次方程
(9 - x0²)k² + 2x0•y0•k + (4 -y0²) = 0
此时,应用韦达定理,我们可以消去k
k1•k2 = -1 = (4 -y0²)/(9 - x0²)
整理得到x0² + y0² = 13
所以点P的轨迹方程为x² + y² = 13
因为要参加说题比赛在用这道题做练习,刚刚做完!
看了已知椭圆C:x^2/a^2+y...的网友还看了以下:
已知半径为5的动圆C的圆心在直线l:x-y+10=0上,是否存在正实数r,使得动圆C中满足与圆O: 2020-06-09 …
已知半径为5的动圆C的圆心在直线l:x-y+10=0上.(1)若动圆C过点(-5,0),求圆C的方 2020-06-09 …
已知半径为5的动圆C的圆心在直线l:x-y+10=0上,是否存在正实数r,使得动圆C中满足与圆O: 2020-06-09 …
已知半径为5的动圆C的圆心在直线l;x-y+10=0上(1)若动圆C过点(-5,0),求圆C的方程 2020-06-09 …
已知直线l:x=m(m<-2)与x轴交于A点动圆M与直线l相切并且与圆O:x2+y2=4相外切.( 2020-06-15 …
点P(-3,0)是圆x^2+y^2-6x-55=0内一定点,动圆M与已知圆相内切,且过P点,则圆心 2020-06-15 …
已知圆A:(x+5)平方+y平方=49圆B:(x-5)平方+y平方=1(1)设P(-1,4)为圆A 2020-06-29 …
半径不等的两个定圆O1O2,无公共点,动圆O与O1,O2都内切,则圆心O轨迹是? 2020-07-26 …
已知半径为5的动圆C的圆心在直线l:x-y+10=0上。(1)若动圆C过点(-5,0),求圆C的方 2020-07-26 …
如图所示,传送带的两个轮子半径均为r=0.八m,两个轮子最高点t、B在同一水平面内,t、B间距离L= 2020-12-12 …