早教吧作业答案频道 -->数学-->
设数列{xn}满足logaxn+1=1+logaxn,且x1+x2+…+x100=100,x101+x102+…+x200的值为()A.100aB.101a2C.101a100D.100a100
题目详情
设数列{ xn}满足logaxn+1=1+logaxn,且x1+x2+…+x100=100,x101+x102+…+x200的值为( )
A. 100a
B. 101a2
C. 101a100
D. 100a100
A. 100a
B. 101a2
C. 101a100
D. 100a100
▼优质解答
答案和解析
∵logaxn+1=1+logaxn,∴logaxn+1-logaxn=1,
∴
=1,则
=a,
∴数列{xn}是以a为公比的等比数列,
∵x1+x2+…+x100=100,∴x101+x102+…+x200=a100x1+a100x2+…a100x100
=a100(x1+x2+…+x100)=100a100,
故选D.
∴
log |
a |
xn+1 |
xn |
∴数列{xn}是以a为公比的等比数列,
∵x1+x2+…+x100=100,∴x101+x102+…+x200=a100x1+a100x2+…a100x100
=a100(x1+x2+…+x100)=100a100,
故选D.
看了设数列{xn}满足logaxn...的网友还看了以下:
设定义在R上的函数f(x)、g(x)满足f(x)g(x)=ax,且f′(x)g(x)>f(x)g′ 2020-04-07 …
已知f(x)、g(x)都是定义在R上的函数,g(x)≠0,f(x)g(x)=ax,且f′(x)g( 2020-06-16 …
两道关于函数的增长的证明题1.证明:f(n)=n^100,对g(n)=2^n是O(g)的,但g不是 2020-08-01 …
设f(x)是一个n次多项式,若当k=0,1,...,n时有f(k)=k/(k+1),求f(n+1) 2020-08-02 …
周期函数选择一道任意实数x,f(x)=|sinx|,g(x)﹦x-n(n≤x<n+1,n∈z),在 2020-08-02 …
已知f(x),g(x)都是定义在R上的函数,g(x)≠0,f(x)g′(x)>f′(x)g(x), 2020-08-02 …
若f(x)和g(x)在区间[a,b]上可导,且(g(x)的导数)不等于0.则存在一个nin(a,b) 2020-11-20 …
若f(x)和g(x)在区间[a,b]上可导,且(g(x)的导数)不等于0.则存在一个nin(a,b) 2020-11-20 …
已知f(x)是n次多项式,g(x)是m次多项式,则f(x)·g(x)展开后,至多有几项问一下(m+1 2020-12-14 …
f(x)=e^xx∈R,g(x)=ln[f(x)+a],a是常数.(1)求证f(x)>=x+1(2) 2020-12-23 …