早教吧作业答案频道 -->数学-->
设数列an的前n项和为Sn,已知a1=1,S(n+1)=4an+2且(a(n+1)-2an)为等比数列,求数列an的通项公式
题目详情
设数列an的前n项和为Sn,已知a1=1,S(n+1)=4an+2且(a(n+1)-2an)为等比数列,求数列an的通项公式
▼优质解答
答案和解析
Sn=4a(n-1)+2
S(n+1)-Sn=4an-4a(n-1)=a(n+1)
[a(n+1)-2an]/[an-2a(n-1)]=[2an-4a(n-1)]/[an-2a(n-1)]=2
设bn=a(n+1)-2an
b1=3
bn=3×2^(n-1)
所以a(n+1)-2an=3×2^(n-1)
上式可化为a(n+1)-3(n+1)2^(n-1)=2[an-3n*2^(n-2)]
[a(n+1)-3(n+1)2^(n-1)]/[an-3n*2^(n-2)]=2
令cn=an-3n*2^(n-2)
则c1=-1/2
cn=-2^(n-2)
则an=3n*2^(n-2)-2^(n-2)
=(3n-1)2^(n-2)
S(n+1)-Sn=4an-4a(n-1)=a(n+1)
[a(n+1)-2an]/[an-2a(n-1)]=[2an-4a(n-1)]/[an-2a(n-1)]=2
设bn=a(n+1)-2an
b1=3
bn=3×2^(n-1)
所以a(n+1)-2an=3×2^(n-1)
上式可化为a(n+1)-3(n+1)2^(n-1)=2[an-3n*2^(n-2)]
[a(n+1)-3(n+1)2^(n-1)]/[an-3n*2^(n-2)]=2
令cn=an-3n*2^(n-2)
则c1=-1/2
cn=-2^(n-2)
则an=3n*2^(n-2)-2^(n-2)
=(3n-1)2^(n-2)
看了 设数列an的前n项和为Sn,...的网友还看了以下:
已知数列an,bn中,a1=b1=1,且当n≥2时,an-nan-1=0,bn=2bn-1-已知数 2020-05-15 …
数列{n×2^(n-1)}的前n项和为多少?A.-n*2^n-1+2^nBn*2^n+1-2^nC 2020-07-09 …
已知数列{an}的前n项和为Sn=n^2+n+1(1)求数列{an}的通项公式(2)已知数列{an 2020-07-11 …
在数列{an}中,a1=1,an+1=1-1/(4an),bn=2/((2an)-1).求证数列{ 2020-07-28 …
已知数列{an}中,a1=5,an=2a(n-1)+2^n-1(n∈N*且n≥2)(1)求a2,a 2020-07-29 …
在各项均为正数的数列{an}中a1=三分之一且an+1-an+4an+1an=0通项公式前n项和在 2020-07-30 …
已知数列{An}的前n项和为Sn,Sn=2-(2\n+1)*An.(1)求证:数列{An\n}是等 2020-07-30 …
已知等比数列{2^(n-1)*an}的前n项和sn=9-6n已知等比数列{an*2^(n-1)}的前 2020-11-02 …
设数列{an}满足a(n+1)=2an+n^2-4n+1.(1)若a1=3,求证:存在f(n)=an 2020-11-19 …
一道易错数学题数列1,1+2,1+2+4,1+2+4+8,.,1+2+4+8+2^n,求数列的和?我 2020-12-12 …