早教吧作业答案频道 -->数学-->
已知数列{An}的前n项和为Sn,Sn=2-(2\n+1)*An.(1)求证:数列{An\n}是等比数列;(2)设数列{2^n*An}的前n(2)设数列{2^n*An}的前n项和为Tn,An=1\T1+1\T2+1\T3+…+1\Tn.试比较An与2\n*An的大小
题目详情
已知数列{An}的前n项和为Sn,Sn=2-(2\n+1)*An.(1)求证:数列{An\n}是等比数列;(2)设数列{2^n*An}的前n
(2)设数列{2^n*An}的前n项和为Tn,An=1\T1+1\T2+1\T3+…+1\Tn.试比较An与2\n*An
的大小
(2)设数列{2^n*An}的前n项和为Tn,An=1\T1+1\T2+1\T3+…+1\Tn.试比较An与2\n*An
的大小
▼优质解答
答案和解析
(1)
a1=S1=2-[(2/1)+1]a1
整理,得4a1=2 a1=1/2
n≥2时,
Sn=2-[(2/n)+1]an
Sn-1=2-[2/(n-1) +1]a(n-1)
Sn-Sn-1=an=2-[(2/n)+1]an-2+[2/(n-1) +1]a(n-1)
整理,得
[2(n+1)/n]an=[(n+1)/(n-1)]a(n-1)
2an/n=a(n-1)/(n-1)
(an/n)/[a(n-1)/(n-1)]=1/2,为定值.
a1/1=(1/2)/1=1/2
数列{an/n}是以1/2为首项,1/2为公比的等比数列.
an/n=(1/2)×(1/2)^(n-1)=1/2ⁿ
(2)
an=n/2ⁿ
2ⁿ×an=2ⁿ×n/2ⁿ=n
Tn=1+2+...+n=n(n+1)/2
1/Tn=2/[n(n+1)]=2[1/n-1/(n+1)]
An=1/T1+1/T2+1/T3+...+1/Tn
=2[1-1/2+1/2-1/3+1/3-1/4+...+1/n-1/(n+1)]
=2[1-1/(n+1)]
=2n/(n+1)
An/[2/(nan)]
=[2n/(n+1)]/[2/(n²/2ⁿ)]
=n³/[(n+1)×2ⁿ]
a1=S1=2-[(2/1)+1]a1
整理,得4a1=2 a1=1/2
n≥2时,
Sn=2-[(2/n)+1]an
Sn-1=2-[2/(n-1) +1]a(n-1)
Sn-Sn-1=an=2-[(2/n)+1]an-2+[2/(n-1) +1]a(n-1)
整理,得
[2(n+1)/n]an=[(n+1)/(n-1)]a(n-1)
2an/n=a(n-1)/(n-1)
(an/n)/[a(n-1)/(n-1)]=1/2,为定值.
a1/1=(1/2)/1=1/2
数列{an/n}是以1/2为首项,1/2为公比的等比数列.
an/n=(1/2)×(1/2)^(n-1)=1/2ⁿ
(2)
an=n/2ⁿ
2ⁿ×an=2ⁿ×n/2ⁿ=n
Tn=1+2+...+n=n(n+1)/2
1/Tn=2/[n(n+1)]=2[1/n-1/(n+1)]
An=1/T1+1/T2+1/T3+...+1/Tn
=2[1-1/2+1/2-1/3+1/3-1/4+...+1/n-1/(n+1)]
=2[1-1/(n+1)]
=2n/(n+1)
An/[2/(nan)]
=[2n/(n+1)]/[2/(n²/2ⁿ)]
=n³/[(n+1)×2ⁿ]
看了 已知数列{An}的前n项和为...的网友还看了以下:
为什么r^(n-1)和r^n的前n项和都是(1-r^n)/(1-r)? 2020-04-07 …
知道通项公式如何求和?如知道Cn=1-n+2的(n-1)分成当n=1和当n≧2时 2020-05-13 …
数列怎么这么难!1.已知a(1)=3且a(n)=S(n-1)+2^n,求an及Sn.2.已知S(n 2020-06-04 …
数学求极限问题啊lima0x^n+a1x^n-1+...+a(n-1)x+a(n)/b0x^m+b 2020-07-09 …
你能比较20032004和20042003的大小吗?为了解决这个问题,我们首先把它抽象成数学问题, 2020-07-15 …
幂级数中x的指数不是n的话收敛半径怎么求?比如:∑(1/2^n)x^(2n-1)和∑2^n/(2幂 2020-07-30 …
2^n-1是素数2^n-1如果是素数的话,2^(n-1)(2^n-1)的全部正约数的和是2^n(2 2020-07-31 …
假定用两个一维数组L[n+1]和R[n+1]作为有n个结点的二叉树的存储结构,L[i]和R[i]分 2020-08-03 …
△x=x(n+1)x(x(n+1n)=aT2其中,(n+1)和(n)在x的右下角,请高手告诉我x(n 2020-11-01 …
a^(n+1)*u(n+1)和a^(n+2)*u(n+2)z变换如题,系数和U分别是a+1和a+2谢 2021-01-07 …