早教吧作业答案频道 -->其他-->
设函数f(x)在闭区间[a,b]上连续并在开区间(a,b)内可导,如果在(a,b)内f′(x)>0,那么必有()A.在[a,b]上f(x)>0B.在[a,b]上f(x)单调增加C.在[a,b]上f(x)单调减
题目详情
设函数f(x)在闭区间[a,b]上连续并在开区间(a,b)内可导,如果在(a,b)内f′(x)>0,那么必有( )
A.在[a,b]上f(x)>0
B.在[a,b]上f(x)单调增加
C.在[a,b]上f(x)单调减少
D.在[a,b]上f(x)是凸的
A.在[a,b]上f(x)>0
B.在[a,b]上f(x)单调增加
C.在[a,b]上f(x)单调减少
D.在[a,b]上f(x)是凸的
▼优质解答
答案和解析
因为函数f(x)在闭区间[a,b]上连续并在开区间(a,b)内可导,
故对于任意a≤x1<x2≤b,利用拉格朗日中值定理可得,
f(x1)-f(x2)=f′(ξ)(x1-x2),ξ∈(x1,x2).
因为在(a,b)内f′(x)>0,
故f(x1)-f(x2)>0,
即:f(x1)>f(x2),
从而f(x)在[a,b]上单调增加,选项B正确,选项C错误.
A、D也都是错误的.
A的反例:f(x)=x-2,0≤x≤1,f′(x)=1>0,但是f(x)≤-1<0.
D的反例:f(x)=x2,0≤x≤1,则在(0,1)内,f′(x)=2x>0,但是f(x)为凹的.
综上,正确选项为B.
故选:B.
故对于任意a≤x1<x2≤b,利用拉格朗日中值定理可得,
f(x1)-f(x2)=f′(ξ)(x1-x2),ξ∈(x1,x2).
因为在(a,b)内f′(x)>0,
故f(x1)-f(x2)>0,
即:f(x1)>f(x2),
从而f(x)在[a,b]上单调增加,选项B正确,选项C错误.
A、D也都是错误的.
A的反例:f(x)=x-2,0≤x≤1,f′(x)=1>0,但是f(x)≤-1<0.
D的反例:f(x)=x2,0≤x≤1,则在(0,1)内,f′(x)=2x>0,但是f(x)为凹的.
综上,正确选项为B.
故选:B.
看了 设函数f(x)在闭区间[a,...的网友还看了以下:
还是lingo问题road(country,country):length,xie,c;endse 2020-05-13 …
习题1.4(38页~39页)急用!明天就要交了!需要题目的我可以打出来12.如果a<b,b>0,那 2020-05-17 …
ansys直接建立有限元模型问题finish/clear/prep7n,1,0,0,0n,2,0, 2020-05-17 …
1.用3,3,6,6,9,0,0,0,0组成一个最接近6亿的数,那个数是多少?2.用3,3,6,1 2020-05-23 …
①有四个命题:1.如果|a|=|b|,那么a的平方=b的平方;2.如果ab=0,那么a=b=0;3 2020-06-26 …
问个题袄西西如果|ab-2|+|b-1|=0那么ab/1+(a+1)*1/(b+1)+1/(a+2 2020-06-27 …
你的在等式y=kx+b中,当x=0时,y=1;当x=4时,y=3,那么k=,b=.那个人做错了你还 2020-07-25 …
关于数学集合问题求助如果说A={x∈N|0≤x≤10}B={x∈N|0≤x≤10}就可以说A=B那 2020-07-30 …
事件同时发生的概率,事件A的概率为0.5,B为0.6,C为0.7,A,B,C同时发的概率是多少?是三 2020-11-24 …
如果a、b是有理数,则下列各式子成立的是()A.如果a<0,b<0,那么a+b>0B.如果a>0,b 2021-02-02 …