早教吧作业答案频道 -->其他-->
f(x)在[0,a]上连续在(0,a)内可导且f(0)=0f(x)的导数单调增加求证:f(x)/x在(0,a)内也单调增加f(x)在[0,a]上连续在(0,a)内可导且f(0)=0f(x)的导数单调增加求证:f(x)/x在(0,a)内也单调增加
题目详情
f(x)在[0,a]上连续 在(0,a)内可导 且f(0)=0 f(x)的导数单调增加 求证:f(x)/x在(0,a)内也单调增加
f(x)在[0,a]上连续 在(0,a)内可导 且f(0)=0 f(x)的导数单调增加
求证:f(x)/x在(0,a)内也单调增加
f(x)在[0,a]上连续 在(0,a)内可导 且f(0)=0 f(x)的导数单调增加
求证:f(x)/x在(0,a)内也单调增加
▼优质解答
答案和解析
令F(x)=f(x)/x,x∈[0,a]
F'(x)=[xf'(x)-f(x)]/x^2
另g(x)=xf'(x)-f(x)
g'(x)=f'(x)+xf''(x)-f'(x)=xf''(x)
∵f(x)的导数单调递增
∴f''(x)≥0
显然x>0
所以g'(x)≥0
∴g(x)为在(0,a)单调递增
∴g(x)≥H(0)=0-f(0)=0
∴F'(x)≥0
∴F(x)在(0,a)上单调递增
F'(x)=[xf'(x)-f(x)]/x^2
另g(x)=xf'(x)-f(x)
g'(x)=f'(x)+xf''(x)-f'(x)=xf''(x)
∵f(x)的导数单调递增
∴f''(x)≥0
显然x>0
所以g'(x)≥0
∴g(x)为在(0,a)单调递增
∴g(x)≥H(0)=0-f(0)=0
∴F'(x)≥0
∴F(x)在(0,a)上单调递增
看了 f(x)在[0,a]上连续在...的网友还看了以下:
求两函数极限区间的题目1.设f(x)在[0,2a]上连续且发f(0)=f(2a)证明:至少存在一点 2020-06-05 …
设函数f(x)在[a,+∞)内连续,在(a,+∞)内可导,且f′(x)>k>0(其中k为常数),又 2020-06-12 …
设f(x)在(a,b)内二阶可导,且f(x1)=f(x2)=f(x3),而a<x1<x设f(x)在 2020-06-15 …
设F(x)=(f(x)-f(a))/(x-a),(x>a)其中f(x)在[a,+∞)上连续,f'' 2020-06-16 …
高等数学综合题:已知函数f(x)在区间[a,b]上连续,且f(x)>0,设函数F(x)=∫[a→x 2020-07-22 …
一个导数问题的理解设f(x)在[a,b]上连续,在(a,b)内可导且不恒于常数,f(a)=f(b) 2020-07-31 …
对a的某去心邻域N°(a,r)内任何收敛于a的数列{xn}有f(xn)→m(n→∞)证明:f(x) 2020-07-31 …
高数证明题设函数在闭区间[a,b]上连续,在开区间(a,b)内具有二阶导数,且f(a)=f(b), 2020-08-01 …
若f(x)在(c,d)区间内存在二阶导数,a,b∈(c,d),且f'(a)=0.证明:在(a,b)内 2020-12-28 …
高数证明题设函数f(x)在(a,b)内有定义,对于x1,x2∈(a,b)恒有:|f(x2)-f(x1 2021-02-05 …