早教吧作业答案频道 -->数学-->
函数展开成幂级数的疑问在学泰勒公式部分,我们知道若函数f(x)在x0的某一邻域内具有直到(n+1)阶的导数,则在该邻域内f(x)的n阶泰勒公式为一个多项式+Rn(x)余项,这个公式应该是恒成立的,只要
题目详情
函数展开成幂级数的疑问
在学泰勒公式部分,我们知道若函数f(x)在x0的某一邻域内具有直到(n+1)阶的导数,则在该邻域内f(x)的n阶泰勒公式为一个多项式+Rn(x)余项,这个公式应该是恒成立的,只要满足函数f(x)在x0的某一邻域内具有直到(n+1)阶的导数,且函数在这个邻域内即可.但是相应的若f(x)在x0的某邻域内存在各阶导数,我们就可以把多项式无穷的写下去,即f(x)=多项式(无穷项),那么相应的这个公式也应该是恒成立的,只要满足f(x)在x0的某邻域内存在各阶导数,且函数在这个邻域内即可吧?如果我说的对,那么请看下面的
但是为什么函数展开成幂级数只在级数的收敛域和函数的定义域的公共部分才成立呢?
如1/1-x=1+x+x^2+.+x^n+...只在(-1
在学泰勒公式部分,我们知道若函数f(x)在x0的某一邻域内具有直到(n+1)阶的导数,则在该邻域内f(x)的n阶泰勒公式为一个多项式+Rn(x)余项,这个公式应该是恒成立的,只要满足函数f(x)在x0的某一邻域内具有直到(n+1)阶的导数,且函数在这个邻域内即可.但是相应的若f(x)在x0的某邻域内存在各阶导数,我们就可以把多项式无穷的写下去,即f(x)=多项式(无穷项),那么相应的这个公式也应该是恒成立的,只要满足f(x)在x0的某邻域内存在各阶导数,且函数在这个邻域内即可吧?如果我说的对,那么请看下面的
但是为什么函数展开成幂级数只在级数的收敛域和函数的定义域的公共部分才成立呢?
如1/1-x=1+x+x^2+.+x^n+...只在(-1
▼优质解答
答案和解析
函数f(x)在x0的某一邻域内具有直到(n+1)阶的导数,则在该邻域内f(x)的n阶泰勒公式为一个多项式+Rn(x)余项,这个公式应该是恒成立的,只要满足函数f(x)在x0的某一邻域内具有直到(n+1)阶的导数,且函数在这个邻域内即可.这个对.
若f(x)在x0的某邻域内存在各阶导数,我们就可以把多项式无穷的写下去,即f(x)=多项式(无穷项),那么相应的这个公式也应该是恒成立的,只要满足f(x)在x0的某邻域内存在各阶导数,且函数在这个邻域内即可吧?.这个不对!
关于这些内容,书上都写的很清楚的,仔细去翻书.
若f(x)在x0的某邻域内存在各阶导数,我们就可以把多项式无穷的写下去,即f(x)=多项式(无穷项),那么相应的这个公式也应该是恒成立的,只要满足f(x)在x0的某邻域内存在各阶导数,且函数在这个邻域内即可吧?.这个不对!
关于这些内容,书上都写的很清楚的,仔细去翻书.
看了 函数展开成幂级数的疑问在学泰...的网友还看了以下:
等比数列前N项和的难题一个数列{an},通项公式为(n+1)/(2∧(n+1)),求前n项的和.要 2020-05-13 …
奥数题(同余的概念及性质)1、 270除以自然数n的余数是15,186除以自然数n余数是16, 2020-05-16 …
数列问题,求详细解答数列{an}中,a1=-2/3,当n≧2时,恒有an=(1/Sn)+Sn+2成 2020-06-05 …
带皮亚诺余项的泰勒公式,有n阶导数,但我只求三阶泰勒公式,f(x)能等于这个带皮亚诺余项的三阶泰勒 2020-06-29 …
当990和768除以某一个自然数n,余数分别为2和1。那么,n最小是多少。要有具体的计算方法和步骤 2020-07-09 …
N≡ri(modPi)(i=1,2,…,n)中的mod是什么意思?(设P1,P2,…,Pn互素,M 2020-07-21 …
函数展开成幂级数的疑问在学泰勒公式部分,我们知道若函数f(x)在x0的某一邻域内具有直到(n+1) 2020-07-31 …
给数列递推公式求闭公式f(n)=(5*f(n-1)-6*f(n-2))mod2005f(0)=1; 2020-08-01 …
初学者的高代问题,计算行列式.设n阶行列式D=|aij|=555……5011……1001……1…… 2020-08-03 …
求模具常用三角函数公式?求模具常用三角函数公式,正弦,余弦,对边,斜边.邻边? 2020-12-14 …