早教吧作业答案频道 -->其他-->
奥数题(同余的概念及性质)1、 270除以自然数n的余数是15,186除以自然数n余数是16,那么自然数n应该是多少?2、 999+2×999+3×999+……+999x999 除以13所得的余数是多少?3、 有三个吉利数168/518/
题目详情
奥数题(同余的概念及性质)
1、 270除以自然数n的余数是15,186除以自然数n余数是16,那么自然数n应该是多少?
2、 999+2×999+3×999+……+999x999 除以13所得的余数是多少?
3、 有三个吉利数168/518/666,用它们分别除以同一个自然数,168余(a+5),518余(a+7),666余(a+10),求这个自然数
4、 如果2005和1783除以某一个自然数n时,他们的余数分别是3和2,那么n是多少?
5、 今天是星期五,再过 365的365次方 天是星期几?
6、 203×203×203×203×……×203(2005个203)颗子弹装入盒子,每盒装6颗,最后余下多少颗?
1、 270除以自然数n的余数是15,186除以自然数n余数是16,那么自然数n应该是多少?
2、 999+2×999+3×999+……+999x999 除以13所得的余数是多少?
3、 有三个吉利数168/518/666,用它们分别除以同一个自然数,168余(a+5),518余(a+7),666余(a+10),求这个自然数
4、 如果2005和1783除以某一个自然数n时,他们的余数分别是3和2,那么n是多少?
5、 今天是星期五,再过 365的365次方 天是星期几?
6、 203×203×203×203×……×203(2005个203)颗子弹装入盒子,每盒装6颗,最后余下多少颗?
▼优质解答
答案和解析
用数学语言表达如下:
1.由已知得
270-15≡186-16≡0 (mod n)
即255≡170≡0 (mod n)
3×5×17≡2×5×17≡0 (mod n)
故n是255和170的公约数,可能是17或85
2.999+2×999+3×999+……+999x999
=999×(1+2+...+999)
=999×999×500
根据同余的可乘性知
若a≡b(mod m),c≡d(mod m),那么ac≡bd(mod m)
999≡11 (mod 13)
500≡6 (mod 13)
故999×999×500≡11×11×6=11×66=11×1=11(mod 13)
余数是11
3.设这个自然数为n,则
168-5≡518-7≡666-10≡a (mod n)
163≡511≡656≡a (mod n)
故511-163≡656-163≡656-511≡0 (mod n)
即348≡493≡145≡0 (mod n)
12×29≡17×29≡5×29≡0 (mod n)
故n是348,493,145的公约数,n=29
4.2005-3≡1783-2≡0 (mod n)
即2002≡1781≡0 (mod n)
13×154≡13×137≡0 (mod n) ,(154,137)=1 ),(记号(154,137)表示154与137的最大公约数)
故n是2002,1781的公约数,n=13
5.因为365≡1 (mod 7)
所以由同余的可乘性,若a≡b(mod m),c≡d(mod m),那么ac≡bd(mod m)知
365^365≡1^365 ≡1(mod 7)
是星期六
6.因为203≡5(mod 6)
所以由同余的可乘性知
203×203×203×203×……×203≡5×5×...×5≡5×25×25×...×25≡5×1×1×...×1≡5 (mod 6)
最后余下5颗
1.由已知得
270-15≡186-16≡0 (mod n)
即255≡170≡0 (mod n)
3×5×17≡2×5×17≡0 (mod n)
故n是255和170的公约数,可能是17或85
2.999+2×999+3×999+……+999x999
=999×(1+2+...+999)
=999×999×500
根据同余的可乘性知
若a≡b(mod m),c≡d(mod m),那么ac≡bd(mod m)
999≡11 (mod 13)
500≡6 (mod 13)
故999×999×500≡11×11×6=11×66=11×1=11(mod 13)
余数是11
3.设这个自然数为n,则
168-5≡518-7≡666-10≡a (mod n)
163≡511≡656≡a (mod n)
故511-163≡656-163≡656-511≡0 (mod n)
即348≡493≡145≡0 (mod n)
12×29≡17×29≡5×29≡0 (mod n)
故n是348,493,145的公约数,n=29
4.2005-3≡1783-2≡0 (mod n)
即2002≡1781≡0 (mod n)
13×154≡13×137≡0 (mod n) ,(154,137)=1 ),(记号(154,137)表示154与137的最大公约数)
故n是2002,1781的公约数,n=13
5.因为365≡1 (mod 7)
所以由同余的可乘性,若a≡b(mod m),c≡d(mod m),那么ac≡bd(mod m)知
365^365≡1^365 ≡1(mod 7)
是星期六
6.因为203≡5(mod 6)
所以由同余的可乘性知
203×203×203×203×……×203≡5×5×...×5≡5×25×25×...×25≡5×1×1×...×1≡5 (mod 6)
最后余下5颗
看了 奥数题(同余的概念及性质)1...的网友还看了以下:
1.小阳在计算有余数的除法时,把被除数574错写成745,这样商比原来多了10,而余数比原来少9. 2020-05-16 …
(简单答法)若两个自然数,除以13后得到的余数分别为5和9,那么他们之积除以13的余数是多少?(记 2020-05-16 …
若俩个自然数除以13后得到的余数分别为5和9,那那么它们之积除以13的余数为 2020-05-16 …
数学漏洞多出来的钱50块钱买东西买衣服,花了20这时还剩余30.买拖鞋花了15这时还剩余15又买了 2020-05-17 …
已知两个连续的三位数除以5的余数之和为7,除以6的余数之和也为7,除以7的余数之和为9,那么这两个 2020-06-11 …
34的余数9余数7余数5各是多少啊知道的告诉下啊,怎么算出来的公式一起写上面那您算出来的3个余数排 2020-06-15 …
北京=奥运会/梦想成真,这几个数字个代表1-9九个数字,北=1,京=9,那么奥运会和梦想成真分别代 2020-06-30 …
多项式f(x)被(x^2-1)除后的余式为x+1,被(x-2)除后的余式为9,那么f(x)被(x- 2020-07-27 …
列式计算(1)28与4.2的积减去7除9.1的商,差是多少?(2)4.6与0.9的积乘1与0.4的差 2020-11-07 …
阅读下面的文字,将画线句子改成整句。选择文学,我也就选择了与文学家一同散步,在那里,我会去探寻余秋雨 2020-12-21 …