早教吧作业答案频道 -->数学-->
设函数f(x)在x=0处的某邻域内有二阶连续导数,且f(0)不为0,f'(0)不为0,f''(0)不为0,.转下面证明,存在唯一的一组实数abc,使得当h趋向于0时,af(h)+bf(2h)+cf(3h)—f(0)是比h^2高阶的无穷小
题目详情
设函数f(x)在x=0处的某邻域内有二阶连续导数,且f(0)不为0,f'(0)不为0,f''(0)不为0,.转下面
证明,存在唯一的一组实数abc,使得当h趋向于0时,af(h)+bf(2h)+cf(3h)—f(0)是比h^2高阶的无穷小.
证明,存在唯一的一组实数abc,使得当h趋向于0时,af(h)+bf(2h)+cf(3h)—f(0)是比h^2高阶的无穷小.
▼优质解答
答案和解析
先根据一阶导数来表示f(h),f(2h),f(3h)
在(0,h)上,根据导数定义,有 [f(h)-f(0)]/(h-0)=f'(0) 即 f(h) = f(0)+hf'(0)
在(h,2h)上 有[f(2h)-f(h)]/(2h-h)=f'(h) 可得f(2h) = f(h)+ hf'(h) = f(0) + hf'(0) + hf'(h)
在(2h,3h)上 可得f(3h) = f(2h) +hf'(2h) = f(0) + hf'(0) + hf'(h) + hf'(2h)
代入原式会发现除了常数f(0),f'(0)还有与h相关的变量f'(h)和f'(2h)
再通过二阶导数来表示f'(h)和f'(2h)
在(0,h)上 有 f'(h) = f'(0) + hf''(0)
在(h,2h)上 有 f'(2h) = f'(h) + hf''(h) = f'(0) + hf''(0) +hf''(h)
通过三阶导数来表示f''(h)
f''(h) = f''(0) + hf'''(0)
这样代入原式,整理后得到
(a+b+c-1)×f(0) + (a+2b+3c)×f'(0)×h + (b+3c)×f''(0)×h^2 + c×f''(0)×h^3
为了保证这个式子是比h^2高阶的小量,常数项,一次项,二次项系数均为0
a+b+c-1 = 0
a+2b+3c = 0
b+3c = 0
解得 a=3 b=-3 c=1
在(0,h)上,根据导数定义,有 [f(h)-f(0)]/(h-0)=f'(0) 即 f(h) = f(0)+hf'(0)
在(h,2h)上 有[f(2h)-f(h)]/(2h-h)=f'(h) 可得f(2h) = f(h)+ hf'(h) = f(0) + hf'(0) + hf'(h)
在(2h,3h)上 可得f(3h) = f(2h) +hf'(2h) = f(0) + hf'(0) + hf'(h) + hf'(2h)
代入原式会发现除了常数f(0),f'(0)还有与h相关的变量f'(h)和f'(2h)
再通过二阶导数来表示f'(h)和f'(2h)
在(0,h)上 有 f'(h) = f'(0) + hf''(0)
在(h,2h)上 有 f'(2h) = f'(h) + hf''(h) = f'(0) + hf''(0) +hf''(h)
通过三阶导数来表示f''(h)
f''(h) = f''(0) + hf'''(0)
这样代入原式,整理后得到
(a+b+c-1)×f(0) + (a+2b+3c)×f'(0)×h + (b+3c)×f''(0)×h^2 + c×f''(0)×h^3
为了保证这个式子是比h^2高阶的小量,常数项,一次项,二次项系数均为0
a+b+c-1 = 0
a+2b+3c = 0
b+3c = 0
解得 a=3 b=-3 c=1
看了 设函数f(x)在x=0处的某...的网友还看了以下:
2-3以上这组数字我要在excel中大于0的显示黑字,等于0的显示黑字. 0-1 1-0 3-1 2020-05-14 …
在数轴上,点A,B分别表示数a,b,你能发现点A,B之间的距离与数a,b之间的关系吗当b大于0时, 2020-06-09 …
a^2-4b大于等于0-a-2小于0b-(-a)+1大于0是组 2020-06-10 …
任意三个连续的偶数(大于0)所组成的三位数是3的倍数吗?举3个例子进行猜想验 2020-06-25 …
解不等式(x-3)(x+4)大于0,根据乘法法则,原不等式可能化成不等式组:x-3大于0,x+4大 2020-06-27 …
医学统计学问题,来自某药品说明书.“实验共入组137人,试验组70人,对照组67人.试验组死亡5人 2020-07-11 …
有一汽车站,某天某段时间内出事故的概率是0.0001,某天有1000辆汽车经过,求出事故不小于2的 2020-07-12 …
设函数f(x)在x=0处的某邻域内有二阶连续导数,且f(0)不为0,f'(0)不为0,f''(0) 2020-07-31 …
excel2010中,单元格数值大于某值显示某值?数值在u2列,在w2单元格使用公式,如果u2等于以 2020-10-31 …
冻雨是由过冷水滴(温度低于0℃)组成的、与低于0℃的物体碰撞立即冻结的降水,它能形成毛玻璃状或透明的 2020-12-07 …