早教吧作业答案频道 -->其他-->
已知点E是正方形ABCD外的一点,EA=ED,线段BE与对角线AC相交于点F,(1)如图1,当BF=EF时,线段AF与DE之间有怎样的数量关系?并证明;(2)如图2,当△EAD为等边三角形时,写出线段AF、BF、E
题目详情
已知点E是正方形ABCD外的一点,EA=ED,线段BE与对角线AC相交于点F,

(1)如图1,当BF=EF时,线段AF与DE之间有怎样的数量关系?并证明;
(2)如图2,当△EAD为等边三角形时,写出线段AF、BF、EF之间的一个数量关系,并证明.

(1)如图1,当BF=EF时,线段AF与DE之间有怎样的数量关系?并证明;
(2)如图2,当△EAD为等边三角形时,写出线段AF、BF、EF之间的一个数量关系,并证明.
▼优质解答
答案和解析
(1)AF=
DE,
证明如下:连接BD交AC于点O,
∵四边形ABCD是正方形,
∴BO=DO,
∵BF=EF,
∴OF=
DE,OF∥DE.
∵BD⊥AC,
∴∠EDO=∠AOB=90°,

∵∠ODA=∠OAD=
×90°=45°,EA=ED,
∴∠EAD=∠EDA=45°,
∴∠OAD=∠AED=∠AOD=90°,
∴四边形AODE是正方形.
∴OA=DE,
∴OF=
AO,
∴AF=
AO=
DE.
(2)AF+BF=EF、AF2+EF2=2BF2等(只要其中一个),
AF+BF=EF的证明方法一:
连接BD交AC于O,在FE上截取FG=BF,连接DG.
与第(1)同理可证∠GDA=45°,
∵四边形ABCD是正方形,△ADE是等边三角形,
∴∠GDE=60°-45°=15°.
∵AB=AD=AE,∠BAE=∠BAD+∠DAE=90°+60°=150°,
∴∠ABE=∠AEB=
=15°,
∴∠ABF=∠GDE.
又∵∠DEG=∠DEA-∠AEB=60°-15°=45°=∠BAC,DE=AD=AB,

∴△ABF≌△EDG
∴EG=AF,
∴AF+BF=EG+FG=EF.
AF+BF=EF的证明方法二(简略):
在FE上截取FG=AF,连接AG.证得△AFG为等边三角形.
证得△ABF≌△AEG.
证得AF+BF=EF.
AF2+EF2=2BF2的证明方法(简略):
作BG⊥BF,且使BG=BF,连接CG、FG,证得△BGC≌△BFA.
证得FC=FE,FG=
BF,
利用Rt△FCG中,得出AF2+EF2=2BF2.
| 1 |
| 2 |
证明如下:连接BD交AC于点O,
∵四边形ABCD是正方形,
∴BO=DO,
∵BF=EF,
∴OF=
| 1 |
| 2 |
∵BD⊥AC,
∴∠EDO=∠AOB=90°,

∵∠ODA=∠OAD=
| 1 |
| 2 |
∴∠EAD=∠EDA=45°,
∴∠OAD=∠AED=∠AOD=90°,
∴四边形AODE是正方形.
∴OA=DE,
∴OF=
| 1 |
| 2 |
∴AF=
| 1 |
| 2 |
| 1 |
| 2 |
(2)AF+BF=EF、AF2+EF2=2BF2等(只要其中一个),
AF+BF=EF的证明方法一:
连接BD交AC于O,在FE上截取FG=BF,连接DG.
与第(1)同理可证∠GDA=45°,
∵四边形ABCD是正方形,△ADE是等边三角形,
∴∠GDE=60°-45°=15°.
∵AB=AD=AE,∠BAE=∠BAD+∠DAE=90°+60°=150°,
∴∠ABE=∠AEB=
| 180°−150° |
| 2 |
∴∠ABF=∠GDE.
又∵∠DEG=∠DEA-∠AEB=60°-15°=45°=∠BAC,DE=AD=AB,

∴△ABF≌△EDG
∴EG=AF,
∴AF+BF=EG+FG=EF.
AF+BF=EF的证明方法二(简略):
在FE上截取FG=AF,连接AG.证得△AFG为等边三角形.
证得△ABF≌△AEG.
证得AF+BF=EF.
AF2+EF2=2BF2的证明方法(简略):

作BG⊥BF,且使BG=BF,连接CG、FG,证得△BGC≌△BFA.
证得FC=FE,FG=
| 2 |
利用Rt△FCG中,得出AF2+EF2=2BF2.
看了 已知点E是正方形ABCD外的...的网友还看了以下:
如图20所示,在三角形ABC中,AB=5,BC=3,AC=4,线段AC上一动点P(P与A、C不重合 2020-04-12 …
如图,平行四边形ABCD中,过A作AM⊥BC于M,交BD于E,过C作CN⊥AD于N,交BD于F,连 2020-05-15 …
问当三角形ABC满足什么条件时,四边形AECF是正方形?请说明.三角形ABC中,点O是AC边上的一 2020-06-04 …
四边形ABCD为菱形,AB=2,P为AB延长线上一动点,连接PC并延长交AD的延长线于Q,连接BQ 2020-06-06 …
在四边形ABCD中,延长CD至E,使得CE=BD,连接AE,∠ABD的角平分线与AE相交于点F.( 2020-06-13 …
(1/2)椭圆x2/2+y2=1与直线y=-x+1相交A.B两点,现有一经过A点的直线并交椭C点. 2020-06-21 …
(1/2)椭圆x2/2+y2=1与直线y=-x+1相交A.B两点,现有一经过A点的直线并交椭C点. 2020-06-21 …
已知:在四边形ABCD中,AC=BD,AC与BD交于点O,∠DOC=60°.(1)当四边形ABCD 2020-07-09 …
如图三角形abc中点o是ac边上一动点过点o作直线mn平行bc设mn与角bca的平分线交于点e交角 2020-07-09 …
以四边形ABCD的边AB、AD为边分别向外侧作等边三角形ABF和ADE,连接EB、FD,交点为G. 2020-07-31 …