早教吧作业答案频道 -->其他-->
已知点E是正方形ABCD外的一点,EA=ED,线段BE与对角线AC相交于点F,(1)如图1,当BF=EF时,线段AF与DE之间有怎样的数量关系?并证明;(2)如图2,当△EAD为等边三角形时,写出线段AF、BF、E
题目详情
已知点E是正方形ABCD外的一点,EA=ED,线段BE与对角线AC相交于点F,

(1)如图1,当BF=EF时,线段AF与DE之间有怎样的数量关系?并证明;
(2)如图2,当△EAD为等边三角形时,写出线段AF、BF、EF之间的一个数量关系,并证明.

(1)如图1,当BF=EF时,线段AF与DE之间有怎样的数量关系?并证明;
(2)如图2,当△EAD为等边三角形时,写出线段AF、BF、EF之间的一个数量关系,并证明.
▼优质解答
答案和解析
(1)AF=
DE,
证明如下:连接BD交AC于点O,
∵四边形ABCD是正方形,
∴BO=DO,
∵BF=EF,
∴OF=
DE,OF∥DE.
∵BD⊥AC,
∴∠EDO=∠AOB=90°,

∵∠ODA=∠OAD=
×90°=45°,EA=ED,
∴∠EAD=∠EDA=45°,
∴∠OAD=∠AED=∠AOD=90°,
∴四边形AODE是正方形.
∴OA=DE,
∴OF=
AO,
∴AF=
AO=
DE.
(2)AF+BF=EF、AF2+EF2=2BF2等(只要其中一个),
AF+BF=EF的证明方法一:
连接BD交AC于O,在FE上截取FG=BF,连接DG.
与第(1)同理可证∠GDA=45°,
∵四边形ABCD是正方形,△ADE是等边三角形,
∴∠GDE=60°-45°=15°.
∵AB=AD=AE,∠BAE=∠BAD+∠DAE=90°+60°=150°,
∴∠ABE=∠AEB=
=15°,
∴∠ABF=∠GDE.
又∵∠DEG=∠DEA-∠AEB=60°-15°=45°=∠BAC,DE=AD=AB,

∴△ABF≌△EDG
∴EG=AF,
∴AF+BF=EG+FG=EF.
AF+BF=EF的证明方法二(简略):
在FE上截取FG=AF,连接AG.证得△AFG为等边三角形.
证得△ABF≌△AEG.
证得AF+BF=EF.
AF2+EF2=2BF2的证明方法(简略):
作BG⊥BF,且使BG=BF,连接CG、FG,证得△BGC≌△BFA.
证得FC=FE,FG=
BF,
利用Rt△FCG中,得出AF2+EF2=2BF2.
1 |
2 |
证明如下:连接BD交AC于点O,
∵四边形ABCD是正方形,
∴BO=DO,
∵BF=EF,
∴OF=
1 |
2 |
∵BD⊥AC,
∴∠EDO=∠AOB=90°,

∵∠ODA=∠OAD=
1 |
2 |
∴∠EAD=∠EDA=45°,
∴∠OAD=∠AED=∠AOD=90°,
∴四边形AODE是正方形.
∴OA=DE,
∴OF=
1 |
2 |
∴AF=
1 |
2 |
1 |
2 |
(2)AF+BF=EF、AF2+EF2=2BF2等(只要其中一个),
AF+BF=EF的证明方法一:
连接BD交AC于O,在FE上截取FG=BF,连接DG.
与第(1)同理可证∠GDA=45°,
∵四边形ABCD是正方形,△ADE是等边三角形,
∴∠GDE=60°-45°=15°.
∵AB=AD=AE,∠BAE=∠BAD+∠DAE=90°+60°=150°,
∴∠ABE=∠AEB=
180°−150° |
2 |
∴∠ABF=∠GDE.
又∵∠DEG=∠DEA-∠AEB=60°-15°=45°=∠BAC,DE=AD=AB,

∴△ABF≌△EDG
∴EG=AF,
∴AF+BF=EG+FG=EF.
AF+BF=EF的证明方法二(简略):
在FE上截取FG=AF,连接AG.证得△AFG为等边三角形.
证得△ABF≌△AEG.
证得AF+BF=EF.
AF2+EF2=2BF2的证明方法(简略):

作BG⊥BF,且使BG=BF,连接CG、FG,证得△BGC≌△BFA.
证得FC=FE,FG=
2 |
利用Rt△FCG中,得出AF2+EF2=2BF2.
看了 已知点E是正方形ABCD外的...的网友还看了以下:
设A是n阶矩阵A^2=E,证明r(A+E)+r(A-E)=n,的一步证明过程不懂由A^2=E,得A 2020-05-14 …
设A为n阶方阵且满足条件A*A+A-6E=0,证明:A-E及A+3E可逆,并求它们的逆.设A为n阶 2020-05-14 …
设A为n阶方阵,E为n阶单位矩阵,证明R(A+E)+R(A-E)》n, 2020-05-15 …
如图1,在平行四边形ABCD中,AB=2AD,E,F分别为AB,CD的中点,沿EF将四边形AEFD 2020-05-17 …
设A与A+E均可逆,G=E-(A+E)^-1,则G^-1= 2020-06-12 …
方阵A满足A^2-3A+2E=0.证明:(1)A+E可逆并求其逆矩阵(2)A-2E与A-E中至少有 2020-06-12 …
请问,在求解矩阵的特征值和特征向量时,特征行列式|λE-A|与|A-λE|可以替代使用吗?在求解特 2020-07-27 …
怎样证明零向量已知det(A-λE)=(a-λ)^3r(A-aE)^2=1证明(A-λE)^3=0 2020-08-01 …
设n阶方阵A满足A*A=E,|A+E|不等于0,证明:A=E. 2020-11-02 …
设A是2阶方阵,且A^2=E,A不等于±E,证明:r(A+E)=r(A-E)=1 2020-11-02 …