早教吧作业答案频道 -->其他-->
如图1,已知△ABC与△DCE都是等腰直角三角形,AC=BC,DC=EC,∠ACB=∠DCE=90°,点D在AC上,直线BD交AE于点F.(1)请补充完整证明“BD=AE,BF⊥AE”的推理过程;证明:在△ACE与△BCD中∵()
题目详情
如图1,已知△ABC与△DCE都是等腰直角三角形,AC=BC,DC=EC,∠ACB=∠DCE=90°,点D在AC上,直线BD交AE于点F.
(1)请补充完整证明“BD=AE,BF⊥AE”的推理过程;
证明:在△ACE与△BCD中
∵(______)
∴△ACE≌△BCD(SAS)
∴BD=AE,∠CAE=∠CBD(全等三角形的对应角相等)
∵∠ACE=90°
∴∠CAE+∠AEC=90°(______)
∴∠CBD+∠AEC=90°(等量代换)
∴______
∴BF⊥AE(垂直的定义)
(2)将△DCE绕着点C旋转,在旋转过程中保持△DCE的大小与形状均不变,那么,当△DCE旋转至图2的位置时,(1)中的结论是否仍然成立?为什么?

(1)请补充完整证明“BD=AE,BF⊥AE”的推理过程;
证明:在△ACE与△BCD中
∵(______)
∴△ACE≌△BCD(SAS)
∴BD=AE,∠CAE=∠CBD(全等三角形的对应角相等)
∵∠ACE=90°
∴∠CAE+∠AEC=90°(______)
∴∠CBD+∠AEC=90°(等量代换)
∴______
∴BF⊥AE(垂直的定义)
(2)将△DCE绕着点C旋转,在旋转过程中保持△DCE的大小与形状均不变,那么,当△DCE旋转至图2的位置时,(1)中的结论是否仍然成立?为什么?

▼优质解答
答案和解析
(1)证明:∵在△ACE和△BCD中
,
∴△ACE≌△BCD(SAS),
∴BD=AE,∠CAE=∠CBD,
∵∠ACE=90°,
∴∠CAE+∠AEC=90°(直角三角形的两锐角互余),
∴∠BFE=90°,
∴BF⊥AE,
故答案为:AC=BC,∠DCB=∠ECA,CE=CD,直角三角形的两锐角互余,∠BFE=90°.
(2)(1)中的结论还成立,
理由是:∵∠ACB=∠DCE=90°,
∴∠ACB+∠BCE=∠DCE+∠BCE,
∴∠ACE=∠BCD,
在△ACE和△BCD中
,
∴△ACE≌△BCD(SAS),
∴BD=AE,∠CAE=∠CBD,
∵∠ACE=90°,
∴∠CAE+∠AHC=90°,
∵∠AHC=∠BHF,∠HBF=∠CAH,
∴∠BHF+∠HBF=90°
∴∠BFE=90°,
∴BF⊥AE.
|
∴△ACE≌△BCD(SAS),
∴BD=AE,∠CAE=∠CBD,
∵∠ACE=90°,
∴∠CAE+∠AEC=90°(直角三角形的两锐角互余),
∴∠BFE=90°,
∴BF⊥AE,
故答案为:AC=BC,∠DCB=∠ECA,CE=CD,直角三角形的两锐角互余,∠BFE=90°.
(2)(1)中的结论还成立,
理由是:∵∠ACB=∠DCE=90°,
∴∠ACB+∠BCE=∠DCE+∠BCE,
∴∠ACE=∠BCD,
在△ACE和△BCD中
|
∴△ACE≌△BCD(SAS),
∴BD=AE,∠CAE=∠CBD,

∵∠ACE=90°,
∴∠CAE+∠AHC=90°,
∵∠AHC=∠BHF,∠HBF=∠CAH,
∴∠BHF+∠HBF=90°
∴∠BFE=90°,
∴BF⊥AE.
看了 如图1,已知△ABC与△DC...的网友还看了以下:
如图,将一张矩形纸片ABCD沿EF折叠,使顶点C,D分别落在点C’,D’处,C’E交AF于点G.若 2020-05-13 …
如图,抛物线y=-x2+2x+3的顶点为C,交x轴于A、B两点,交Y轴于点D(1)求A、C、D三个 2020-05-16 …
已知Rt三角形ABC,斜边上的高为CD,E是BC上的一点,过C,E,D三点所作的圆交AE於F,求证 2020-06-03 …
如图,已知矩形ABCD中,AB=4,E是BC上一点,将△CDE沿直线DE折叠后,点C落在点C′处, 2020-06-12 …
过点A(0,a)作直线与圆E(x-2)²+y²=1交于B,C两点,在B,C上取满足 2020-06-27 …
在锐角三角形ABC中,AB≠AC,AD是高,H是AD上一点,连BH并延长交AC于E,连接CH并延长 2020-07-30 …
知椭圆E:x2a2+y2b2=1(a>b>0)的两个焦点与短轴的一个端点是等边三角形的三个顶点.且 2020-07-31 …
已知:如图,在三角形ABC中,D、E分别是边AB、AC的中点,AB的垂线过点D交AC于点F,AC的 2020-08-01 …
(2012•宿迁)如图,将一张矩形纸片ABCD沿EF折叠,使顶点C,D分别落在点C′,D′处,C′E 2020-11-12 …
尺规作图,角(锐角)OAB以O为圆心,任意长为半径用圆规画弧,分别叫OA,OB于点C、D.任意画一点 2020-11-26 …