如图,扇形AOD中,∠AOD=90°,OA=6,点P为弧AD上任意一点(不与点A和D重合),PQ⊥OD于Q,点I为△OPQ的内心,过O,I和D三点的圆的半径为r.则当点P在弧AD上运动时,r的值满足()A.0<r<
如图,扇形AOD中,∠AOD=90°,OA=6,点P为弧AD上任意一点(不与点A和D重合),PQ⊥OD于Q,点I为△OPQ的内心,过O,I和D三点的圆的半径为r.则当点P
在弧AD上运动时,r的值满足( )
A. 0<r<3
B. r=3
C. 3<r<32
D. r=32
∵△OPH的内心为I,

∴∠IOP=∠IOD,∠IPO=∠IPH,
∴∠PIO=180°-∠IPO-∠IOP=180°-
| 1 |
| 2 |
而PH⊥OD,即∠PHO=90°,
∴∠PIO=180°-
| 1 |
| 2 |
| 1 |
| 2 |
在△OPI和△ODI中,
|
∴△OPI≌△ODI(SAS),
∴∠DIO=∠PIO=135°,
所以点I在以OD为弦,并且所对的圆周角为135°的一段劣弧上;
过D、I、O三点作 O′,如图,连O′D,O′O,
在优弧DO取点P′,连P′D,P′O,
∵∠DIO=135°,
∴∠DP′O=180°-135°=45°,
∴∠DO′O=90°,而OD=6,
∴OO′=DO′=3
| 2 |
∴r的值为3
| 2 |
故选:D.
我无意用尺规画出了一个正四十九边形,(证明成立或不成立)画圆O在圆O上任取一点P40以P40为圆心 2020-05-16 …
AB是圆O的直径,BM垂直于AB于B点,点C是射线BM上异于端点的一动点,AC交圆O于D点,过D点 2020-05-16 …
O'在圆O上,以O'为圆心的圆交O'于A,B,圆O的弦O'C交圆O;于D,求证D为三角形abc内心 2020-06-02 …
如图,圆O与圆D相交于A,B两点,BC为圆D的切线,点C在圆O上,且AB=BC.(1)证明:点O在 2020-06-09 …
已知圆M的方程为:x²+y²-2x-2y-6=0,以坐标原点为圆心的圆O与圆M相切已知圆M的方程为 2020-06-27 …
如图点A在圆O上,圆A交圆O于B,C两点,点E为圆O上任意一点,AE教BC于D,教圆A于F.①AF 2020-07-22 …
利用直尺和圆规作一个角等于已知角的作法如下:①以点O为圆心,以任意长为半径画弧,分别交OA、OB于 2020-07-26 …
圆O与圆O'相交与A,B两点,过点B作CD垂直于AB,分别交圆O与圆O'于点C.D.(1)求证:A 2020-07-31 …
在学习“用直尺和圆规作一个角等于已知角”时,教科书介绍如下:作法:(1)如图所示,以点O为圆心,任意 2020-11-06 …
尺规作图,角(锐角)OAB以O为圆心,任意长为半径用圆规画弧,分别叫OA,OB于点C、D.任意画一点 2020-11-26 …