早教吧作业答案频道 -->数学-->
(2008•天门)如图,AB为⊙O的直径,C为⊙O上一点,∠BAC的平分线交⊙O于点D,过D点作EF∥BC交AB的延长线于点E,交AC的延长线于点F.(1)求证:EF为⊙O的切线;(2)若sin∠ABC=,CF=1,求⊙O
题目详情
(2008•天门)如图,AB为⊙O的直径,C为⊙O上一点,∠BAC的平分线交⊙O于点D,过D点作EF∥BC交AB的延长线于点E,交AC的延长线于点F.
(1)求证:EF为⊙O的切线;
(2)若sin∠ABC=
,CF=1,求⊙O的半径及EF的长.

(1)求证:EF为⊙O的切线;
(2)若sin∠ABC=


▼优质解答
答案和解析
(1)连接OD,只要证明OD⊥EF即可.
(2)连接BD,CD,根据相似三角形的判定可得到△CDF∽△ABD∽△ADF,根据相似比及勾股定理即可求得半径及EF的值.
(1)证明:连接OD;
∵AB是直径,
∴∠ACB=90°;
∵EF∥BC,
∴∠AFE=∠ACB=90°,
∵OA=OD,
∴∠OAD=∠ODA;
又∵AD平分∠BAC,
∴∠OAD=∠DAC,
∴∠ODA=∠DAC,
∴OD∥AF,
∴∠ODE=∠AFD=90°,
即OD⊥EF;
又∵EF过点D,
∴EF是⊙O的切线.
(2)【解析】
连接BD,CD;
∵AB是直径,
∴∠ADB=90°,
∴∠ADB=∠AFD;
∵AD平分∠BAC,
∴∠OAD=∠DAC,
∴BD=CD;
设BD=CD=a;
又∵EF是⊙O的切线,
∴∠CDF=∠DAC,
∴∠CDF=∠OAD=∠DAC,
∴△CDF∽△ABD∽△ADF,
∴
;
∵sin∠ABC=
=
,
∴设AC=4x,AB=5x,
∴
a2=5x,
∴在Rt△CDF中DF2=CD2-CF2=5x-1;
又∵
,
∴5x-1=1×(1+4x),
∴x=2,
∴AB=5x=10,AC=4x=8;
∵EF∥BC,
∴△ABC∽△AEF,
∴
,
,
,
∴在Rt△AEF中,
.
(2)连接BD,CD,根据相似三角形的判定可得到△CDF∽△ABD∽△ADF,根据相似比及勾股定理即可求得半径及EF的值.

∵AB是直径,
∴∠ACB=90°;
∵EF∥BC,
∴∠AFE=∠ACB=90°,
∵OA=OD,
∴∠OAD=∠ODA;
又∵AD平分∠BAC,
∴∠OAD=∠DAC,
∴∠ODA=∠DAC,
∴OD∥AF,
∴∠ODE=∠AFD=90°,
即OD⊥EF;
又∵EF过点D,
∴EF是⊙O的切线.
(2)【解析】
连接BD,CD;
∵AB是直径,
∴∠ADB=90°,
∴∠ADB=∠AFD;
∵AD平分∠BAC,
∴∠OAD=∠DAC,
∴BD=CD;
设BD=CD=a;
又∵EF是⊙O的切线,
∴∠CDF=∠DAC,
∴∠CDF=∠OAD=∠DAC,
∴△CDF∽△ABD∽△ADF,
∴


∵sin∠ABC=


∴设AC=4x,AB=5x,
∴

∴在Rt△CDF中DF2=CD2-CF2=5x-1;
又∵

∴5x-1=1×(1+4x),
∴x=2,
∴AB=5x=10,AC=4x=8;
∵EF∥BC,
∴△ABC∽△AEF,
∴



∴在Rt△AEF中,

看了 (2008•天门)如图,AB...的网友还看了以下:
在△ABC中,AD是中线,O为AD的中点,直线a过点O,过A、B、C三点分别作直线a的垂线,垂足分 2020-06-22 …
在△ABC中,AD是中线,O为AD的中点,直线a过点O,过A、B、C三点分别作直线a的垂线,垂足分 2020-06-22 …
如图,AB为圆O的直径,CD为弦,且CD垂直AB,垂足为点H(1)角OCD的平分线CE交圆O于点E 2020-07-12 …
已知AB为半圆O的直径,点P为直径AB上的任意一点.以点A为圆心,AP为半径作⊙A,⊙A与半圆O相 2020-07-22 …
如图,△ABC中,AB=AC,AD⊥BC,AD=4,CE平分∠ACB交AD于点E.以线段CE为弦作 2020-07-30 …
已知圆O:x2+y2=4,点P是直线X=4上的动点,若点A(-2,0),B(2,0),直线PA,P 2020-07-30 …
如图所示,O点离地面高度为H,以O点为圆心,制作一个半径为R的四分之一光滑圆弧轨道,小球从与O点等 2020-07-31 …
如图,过O外一点P作O的两条切线,切点分别为A、B,点M是劣弧AB上的任一点,过M作0的切线分别交 2020-07-31 …
在空间直角坐标系O-xyz中O为坐标原点,点A,B在空间直角坐标系O-xyz中O为坐标原点,点A, 2020-08-02 …
如图,已知这些钟表均按照某种顺序排列着.那么,最后一个钟表上标示的时间为点分. 2020-11-23 …