早教吧作业答案频道 -->数学-->
(2008•天门)如图,AB为⊙O的直径,C为⊙O上一点,∠BAC的平分线交⊙O于点D,过D点作EF∥BC交AB的延长线于点E,交AC的延长线于点F.(1)求证:EF为⊙O的切线;(2)若sin∠ABC=,CF=1,求⊙O
题目详情
(2008•天门)如图,AB为⊙O的直径,C为⊙O上一点,∠BAC的平分线交⊙O于点D,过D点作EF∥BC交AB的延长线于点E,交AC的延长线于点F.
(1)求证:EF为⊙O的切线;
(2)若sin∠ABC=
,CF=1,求⊙O的半径及EF的长.

(1)求证:EF为⊙O的切线;
(2)若sin∠ABC=


▼优质解答
答案和解析
(1)连接OD,只要证明OD⊥EF即可.
(2)连接BD,CD,根据相似三角形的判定可得到△CDF∽△ABD∽△ADF,根据相似比及勾股定理即可求得半径及EF的值.
(1)证明:连接OD;
∵AB是直径,
∴∠ACB=90°;
∵EF∥BC,
∴∠AFE=∠ACB=90°,
∵OA=OD,
∴∠OAD=∠ODA;
又∵AD平分∠BAC,
∴∠OAD=∠DAC,
∴∠ODA=∠DAC,
∴OD∥AF,
∴∠ODE=∠AFD=90°,
即OD⊥EF;
又∵EF过点D,
∴EF是⊙O的切线.
(2)【解析】
连接BD,CD;
∵AB是直径,
∴∠ADB=90°,
∴∠ADB=∠AFD;
∵AD平分∠BAC,
∴∠OAD=∠DAC,
∴BD=CD;
设BD=CD=a;
又∵EF是⊙O的切线,
∴∠CDF=∠DAC,
∴∠CDF=∠OAD=∠DAC,
∴△CDF∽△ABD∽△ADF,
∴
;
∵sin∠ABC=
=
,
∴设AC=4x,AB=5x,
∴
a2=5x,
∴在Rt△CDF中DF2=CD2-CF2=5x-1;
又∵
,
∴5x-1=1×(1+4x),
∴x=2,
∴AB=5x=10,AC=4x=8;
∵EF∥BC,
∴△ABC∽△AEF,
∴
,
,
,
∴在Rt△AEF中,
.
(2)连接BD,CD,根据相似三角形的判定可得到△CDF∽△ABD∽△ADF,根据相似比及勾股定理即可求得半径及EF的值.

∵AB是直径,
∴∠ACB=90°;
∵EF∥BC,
∴∠AFE=∠ACB=90°,
∵OA=OD,
∴∠OAD=∠ODA;
又∵AD平分∠BAC,
∴∠OAD=∠DAC,
∴∠ODA=∠DAC,
∴OD∥AF,
∴∠ODE=∠AFD=90°,
即OD⊥EF;
又∵EF过点D,
∴EF是⊙O的切线.
(2)【解析】
连接BD,CD;
∵AB是直径,
∴∠ADB=90°,
∴∠ADB=∠AFD;
∵AD平分∠BAC,
∴∠OAD=∠DAC,
∴BD=CD;
设BD=CD=a;
又∵EF是⊙O的切线,
∴∠CDF=∠DAC,
∴∠CDF=∠OAD=∠DAC,
∴△CDF∽△ABD∽△ADF,
∴


∵sin∠ABC=


∴设AC=4x,AB=5x,
∴

∴在Rt△CDF中DF2=CD2-CF2=5x-1;
又∵

∴5x-1=1×(1+4x),
∴x=2,
∴AB=5x=10,AC=4x=8;
∵EF∥BC,
∴△ABC∽△AEF,
∴



∴在Rt△AEF中,

看了 (2008•天门)如图,AB...的网友还看了以下:
如图,AB是⊙O的直径,AC切⊙O于点A,且AC=AB,CO交⊙O于点P,CO的延长线交⊙O于点F 2020-05-13 …
如图1,AB是O的直径,E是AB延长线上一点,EC切O于点C,OP⊥AO交AC于点P,交EC的延长 2020-06-13 …
如图,直线AB交O于C、D两点,CE是O的直径,CF平分∠ACE交O于点F,连接EF,过点F作FG 2020-07-21 …
如图,已知AB、CD是⊙O的直径,DF∥AB交⊙O于点F,BE∥DC交⊙O于点E.(1)求证:BE 2020-07-31 …
如图,已知AB、CD是⊙O的直径,DF∥AB交⊙O于点F,BE∥DC交⊙O于点E.(1)求证:BE 2020-07-31 …
如图,过圆O外一点A分别作圆O的两条切线AB、AC,延长BA于点D,使DA=AB,直线CD交圆O于 2020-08-01 …
如图,直角梯形ABCD中,AB∥CD,∠DAB=90°,CD=AB,4BC2=5AD2,(1)求证: 2020-11-03 …
如图1,BC是O的直径,点A在O上,点D在CA的延长线上,DE⊥BC,垂足为点E,DE与O相交于点H 2020-11-03 …
如图,在Rt△ABC中,∠C=90°,以AC为直径作⊙O,交AB于D,过O作OE∥AB,交BC于E. 2020-11-27 …
如图,⊙O是△ABC的外接圆,AF平分∠BAC交BC于点E,交⊙O于点F,BD平分∠ABC交AF于点 2021-01-24 …