早教吧作业答案频道 -->数学-->
1、讨论y=cosx√sin²x在x=0处的连续性与可导性问题2、y=x³cos2x求y(20)3、设f∈C[0,a],f∈D[0,a],且f(a)=0试证:任意∑∈C(0,a),st.f(∑)+∑f'(∑)=0
题目详情
1、讨论y=cosx√sin²x在x=0处的连续性与可导性问题
2、y=x³cos2x 求y(20)
3、设f∈C[0,a],f∈D[0,a],且f(a)=0 试证:任意∑∈C(0,a),st.f(∑)+∑f'(∑)=0
2、y=x³cos2x 求y(20)
3、设f∈C[0,a],f∈D[0,a],且f(a)=0 试证:任意∑∈C(0,a),st.f(∑)+∑f'(∑)=0
▼优质解答
答案和解析
1、f(x)=cosx|sinx|
f(0)=0 limf(x)=0=f(0)连续
f'(0+)=lim(cosxsinx)/x=1
f'(0-)=lim(-cosxsinx)/x=-1
在x=0处不可导
2、利用莱布尼茨公式,求x^3的3阶导数就够
u(x)=x^3 v(x)=cos2x
u'=3x^2 u''=6x u'''=6 u''''=0...u(20)=0
cos(n)2x=2^ncos(2x+nπ/2)
y(20)=2^20*x^3cos(2x+10π)+60*2^19*x^2cos(2x+19π/2)+2280*2^18*xcos(2x+9π)+6840*2^17*cos(2x+17π/2)
3、设F(x)=xf(x),则F(0)=F(a)=0,那么:F∈C[0,a],F∈D[0,a],由罗尔定理:存在∑∈C(0,a),st.F‘(∑)=0,但F’(x)=xf(x)+f'(x)
即:f(∑)+∑f'(∑)=0
f(0)=0 limf(x)=0=f(0)连续
f'(0+)=lim(cosxsinx)/x=1
f'(0-)=lim(-cosxsinx)/x=-1
在x=0处不可导
2、利用莱布尼茨公式,求x^3的3阶导数就够
u(x)=x^3 v(x)=cos2x
u'=3x^2 u''=6x u'''=6 u''''=0...u(20)=0
cos(n)2x=2^ncos(2x+nπ/2)
y(20)=2^20*x^3cos(2x+10π)+60*2^19*x^2cos(2x+19π/2)+2280*2^18*xcos(2x+9π)+6840*2^17*cos(2x+17π/2)
3、设F(x)=xf(x),则F(0)=F(a)=0,那么:F∈C[0,a],F∈D[0,a],由罗尔定理:存在∑∈C(0,a),st.F‘(∑)=0,但F’(x)=xf(x)+f'(x)
即:f(∑)+∑f'(∑)=0
看了 1、讨论y=cosx√sin...的网友还看了以下:
设函数f(x)与y(x)在0,1上连续,且f(x)=∫(0.c)g(t)dtB、∫(0.c)f(t 2020-04-26 …
设函数f(x)在0,1上连续,在(0,1)内可导,且3∫f(x)dx=f(0),(上限为1,下限为 2020-05-14 …
1.设f(x)在[0,1]上连续,且f(0)=f(1),证明:存在x0∈[0,1],使得f(x0) 2020-06-18 …
f(x)在[0,1]上连续在(0,1)内可导且取正值而f(0)=0证明对任何正整数n,存在c(0, 2020-06-18 …
飞机 扔下3件物品飞机 连续扔下3件物品,若记空气阻力,那么其运动情况为是c吗a 0 b 0 0 2020-06-27 …
高数!求详解设f(x)在[0,1]上连续,在(0,1)内二阶可导,且f(0)=f(1)=0,证明: 2020-07-29 …
函数f(x)在闭区间[0,c]上连续,在开区间(0,c)内可导,且导函数f'(x)单调递减,f(0 2020-08-01 …
一道简单的高数题.设函数f(x)在区间〔0,1〕上连续,在(0,1)内可导,f(0)=f(1)=0 2020-08-02 …
设f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=f(1)=0试证在(0,1)内存在点c 2020-12-28 …
证明:设f(x)在[0,1]上连续,在(0,1)内存在二阶导数,且f(0)=f(1)=0,设F(x) 2020-12-28 …