早教吧作业答案频道 -->数学-->
一道简单的高数题.设函数f(x)在区间〔0,1〕上连续,在(0,1)内可导,f(0)=f(1)=0,f(0.5)=1.试证(1)c属于(0.5,1),f(c)=c;(2)对任意实数m,必存在t属于(0,c),使得f'(t)-m[f(t)-t]=1.
题目详情
一道简单的高数题.
设函数f(x)在区间〔0,1〕上连续,在(0,1)内可导,f(0)=f(1)=0,f(0.5)=1.试证(1)c属于(0.5,1),f(c)=c;(2)对任意实数m,必存在t属于(0,c),使得f'(t)-m[f(t)-t]=1.
设函数f(x)在区间〔0,1〕上连续,在(0,1)内可导,f(0)=f(1)=0,f(0.5)=1.试证(1)c属于(0.5,1),f(c)=c;(2)对任意实数m,必存在t属于(0,c),使得f'(t)-m[f(t)-t]=1.
▼优质解答
答案和解析
令G(x)=f(x)-x.
第一问:G(1)=f(1)-10,根据零点定理,则在(0.5,1)内必有一点c满足G(c)=f(c)-c=0,故f(c)=c.
第二问:要证f'(t)-m[f(t)-t]=1,即证有一点t满足G(x)-mG(x)=0,利用辅助函数方法,设F(x)=exp(-mx)G(x),因为F(c)=F(0)=0,所以存在一点t在(0,c)使得F'(t)=-mexp(-mx)G(t)+exp(-mt)G’(t)=0,即得G'(t)=mG(t),问题得证
第一问:G(1)=f(1)-10,根据零点定理,则在(0.5,1)内必有一点c满足G(c)=f(c)-c=0,故f(c)=c.
第二问:要证f'(t)-m[f(t)-t]=1,即证有一点t满足G(x)-mG(x)=0,利用辅助函数方法,设F(x)=exp(-mx)G(x),因为F(c)=F(0)=0,所以存在一点t在(0,c)使得F'(t)=-mexp(-mx)G(t)+exp(-mt)G’(t)=0,即得G'(t)=mG(t),问题得证
看了 一道简单的高数题.设函数f(...的网友还看了以下:
若方程x^2+(m-1)x+1=0在区间〔0,2〕内有解,求m的取值范围. 2020-05-16 …
若方程|sinx|+cos|x|-a=0在〔-π,π〕上有四个解,求a的取值范围能否说得详细点 2020-05-16 …
关于直线的解析几何已知点P(a,b)与Q(1,0)在直线2x-3y+1=0的两侧,则下列两种说法哪 2020-05-22 …
急..函数f(x)=ax^2+bx+c的图像与x轴的交点坐标为(-3,0),(1,0),在y轴上的 2020-06-02 …
1.lim[(ln(1+x))/(x^3)+f(x)/(x^2)]=0x->0求f''(0).2. 2020-06-10 …
6.2×0.125×2.5(32.1-15.93)×0.387.6×2.2+2.2×3.4-2.2 2020-07-18 …
cos2x-2(2a+1)cosx+2a^2+2a+1=0在[0,2π)内有2不同解,求a范围.设 2020-07-31 …
若关于X的二次方程x2+(m-1)x+1=0在区间0,2上有零点关于x的二次方程x2+(m-1)x 2020-07-31 …
写出用二分法求方程x^3-x-1=0在区间[1,1.5]上的一个解的算法误差不超过0.001并画出程 2020-12-05 …
2道函数题````````````````````````````````````````````` 2020-12-08 …