早教吧 育儿知识 作业答案 考试题库 百科 知识分享

设函数f(x)在0,1上连续,在(0,1)内可导,且3∫f(x)dx=f(0),(上限为1,下限为2/3),证明:在(0,1)内至少存在一点C使f’(C)=0,这里由中值定理得出f(ξ)=0后,怎么由罗尔中值定理得出答案?

题目详情
设函数f(x)在【0,1】上连续,在(0,1)内可导,且3∫f(x)dx=f(0),(上限为1,下限为2/3),证明:在(0,1)内至少存在一点C使f’(C)=0,这里由中值定理得出f(ξ)=0后,怎么由罗尔中值定理得出答案?
▼优质解答
答案和解析
故根据罗尔定理,可知道,在(0,k)上存在一点c使得,f‘(c)=0
因此在(0,1)内至少存在一点C使f’(C)=0