早教吧作业答案频道 -->数学-->
高数!求详解设f(x)在[0,1]上连续,在(0,1)内二阶可导,且f(0)=f(1)=0,证明:在(0,1)内必存在c,使f''(c)=2f'(c)/(1-c)
题目详情
高数!求详解
设f(x)在[0,1]上连续,在(0,1)内二阶可导,且f(0)=f(1)=0,证明:在(0,1)内必存在c,使f ''(c)=2f '(c)/(1-c)
设f(x)在[0,1]上连续,在(0,1)内二阶可导,且f(0)=f(1)=0,证明:在(0,1)内必存在c,使f ''(c)=2f '(c)/(1-c)
▼优质解答
答案和解析
令F(x)=(1-x)*f(x),F(0)=F(1)=0,在[0,1]上应用罗尔中值定理,存在ξ属于(0,1),使得F’(ξ)=0.
F'(x)=-f(x)+(1-x)f'(x)
F''(x)=-2*f'(x)+(1-x)*f''(x) (*)
F'(ξ)=0,F'(1)=0,在[ξ,1]上应用罗尔中值定理,存在c属于(ξ,1),使得
F''(c)=0代入(*)得,F''(c)=-2*f'(c)+(1-c)*f''(c) =0
得证.
F'(x)=-f(x)+(1-x)f'(x)
F''(x)=-2*f'(x)+(1-x)*f''(x) (*)
F'(ξ)=0,F'(1)=0,在[ξ,1]上应用罗尔中值定理,存在c属于(ξ,1),使得
F''(c)=0代入(*)得,F''(c)=-2*f'(c)+(1-c)*f''(c) =0
得证.
看了 高数!求详解设f(x)在[0...的网友还看了以下:
已知抛物线y=ax2+bx+c经过A(-1,0),B(3,0),C(0,3)三点,直线l是抛物线的 2020-04-05 …
设f(x,y)在(0,0)处连续,limx,y→0f(x,y)-1ex2+y2-1=4,则()A. 2020-05-14 …
已知抛物线y=ax2+bx+c经过A(1,0),B(3,0)C(0,3)三点.27.已知抛物线y= 2020-05-19 …
如果圆x2+y2+ax+by+c=0(abc不全为零)与y轴相切于原点,那么()A.a=0,b≠0 2020-07-20 …
若圆x^2+y^2+ax+by-c=0,(a,b,c不全为0)与x轴相切于原点则Aa=0,b≠0, 2020-07-20 …
已知xyz三维坐标系上点A(0,0,1),B(1,1,0),C(0,1,0),O(0,0,0),已 2020-07-30 …
若方程(2a+1)x2+bx+c=0是关于x的一元一次方程,则字母系数a,b,c的值必须满足()A 2020-08-02 …
f(x)在[0,1]上二阶可微且f'(0)=f'(1)=0,则存在c,使得f''(c)≥4|f(1) 2020-11-03 …
△=0,△<0时一元二次方程ax2+bx+c=0(a>0)的根根需要用字母代表出来△>0,△=0,△ 2020-12-27 …
求文档:f(x)=a*x^2+b*x+c,a>b>c,a+b+c=0,若存在实数x,使得a*x^2+ 2021-01-01 …