早教吧 育儿知识 作业答案 考试题库 百科 知识分享

设p:实数x满足x2-4ax+3a2<0,q:实数x满足|x-3|<1.(1)若a=1,且p∧q为真,求实数x的取值范围;(2)若其中a>0且¬p是¬q的充分不必要条件,求实数a的取值范围.

题目详情
设p:实数x满足x2-4ax+3a2<0,q:实数x满足|x-3|<1.
(1)若a=1,且p∧q为真,求实数x的取值范围;
(2)若其中a>0且¬p是¬q的充分不必要条件,求实数a的取值范围.
▼优质解答
答案和解析
(1)由x2-4ax+3a2<0得(x-3a)(x-a)<0
当a=1时,1<x<3,即p为真时实数x的取值范围是1<x<3.
由|x-3|<1,得-1<x-3<1,得2<x<4
即q为真时实数x的取值范围是2<x<4,
若p∧q为真,则p真且q真,
∴实数x的取值范围是2<x<3.
(2)由x2-4ax+3a2<0得(x-3a)(x-a)<0,
若¬p是¬q的充分不必要条件,
则¬p⇒¬q,且¬q⇏¬p,
设A={x|¬p},B={x|¬q},则A⊊B,
又A={x|¬p}={x|x≤a或x≥3a},
B={x|¬q}={x|x≥4或x≤2},
则0<a≤2,且3a≥4
∴实数a的取值范围是
4
3
≤a≤2.