早教吧作业答案频道 -->数学-->
已知f(x)是R上的奇函数,且f(x)的图象关于x=1对称,当x∈[0,1]时,f(x)=2x-1(1)求证:f(x)是周期函数;(2)当x∈[1,2]时,求f(x)的解析式;(3)计算f(0)+f(1)+f(2)+…+f(
题目详情
已知f(x)是R上的奇函数,且f(x)的图象关于x=1对称,当x∈[0,1]时,f(x)=2x-1
(1)求证:f(x)是周期函数;
(2)当x∈[1,2]时,求f(x)的解析式;
(3)计算f(0)+f(1)+f(2)+…+f(2013)的值.
(1)求证:f(x)是周期函数;
(2)当x∈[1,2]时,求f(x)的解析式;
(3)计算f(0)+f(1)+f(2)+…+f(2013)的值.
▼优质解答
答案和解析
(1)∵f(x)的图象关于x=1对称,
∴f(1+x)=f(1-x),
∵f(x)是R上的奇函数,
∴f(1+x)=f(1-x)=-f(x-1),
即f(2+x)=-f(x),
∴f(x+4)=-f(x+2)=f(x),
即f(x)是周期为4的周期函数;
(2)∵f(x)的图象关于x=1对称,
∴f(1+x)=f(1-x),即f(x)=f(2-x)
当x∈[1,2]时,2-x∈[0,1],
∵当x∈[0,1]时,f(x)=2x-1
∴f(x)=f(2-x)=22-x-1,x∈[1,2].
(3)∵当x∈[0,1]时,f(x)=2x-1
∴f(0)=0,f(1)=2-1=1,f(2)=f(0)=0,f(3)=f(-1)=-f(1)=-1,f(4)=f(0)=0,
∴f(0)+f(1)+f(2)+f(3)=0,
即f(0)+f(1)+f(2)+…+f(2013)=503×0+f(2012)+f(2013)=f(0)+f(1)=1.
∴f(1+x)=f(1-x),
∵f(x)是R上的奇函数,
∴f(1+x)=f(1-x)=-f(x-1),
即f(2+x)=-f(x),
∴f(x+4)=-f(x+2)=f(x),
即f(x)是周期为4的周期函数;
(2)∵f(x)的图象关于x=1对称,
∴f(1+x)=f(1-x),即f(x)=f(2-x)
当x∈[1,2]时,2-x∈[0,1],
∵当x∈[0,1]时,f(x)=2x-1
∴f(x)=f(2-x)=22-x-1,x∈[1,2].
(3)∵当x∈[0,1]时,f(x)=2x-1
∴f(0)=0,f(1)=2-1=1,f(2)=f(0)=0,f(3)=f(-1)=-f(1)=-1,f(4)=f(0)=0,
∴f(0)+f(1)+f(2)+f(3)=0,
即f(0)+f(1)+f(2)+…+f(2013)=503×0+f(2012)+f(2013)=f(0)+f(1)=1.
看了 已知f(x)是R上的奇函数,...的网友还看了以下:
已知函数f(x)=sinx+acos平方2分之x,a为常数,a∈R且x=2分之兀是方程f(x)=0 2020-05-13 …
定义在(-1,1)上的函数f(x)-f(y)=f((x-y)/(1-xy)),当X∈(-1,0), 2020-06-09 …
已知函数f(x)对任意的a、b∈R,都有f(a+b)=f(a)+f(b)-1成立,当x>0时,f( 2020-06-18 …
导数乘法证明中h是什么意思?(f(x)g(x))'=lim(h→0)[f(x+h)g(x+h)-f 2020-07-22 …
已知函数fx=ax^2+bx+c(a>0,b∈R,c∈R)已知函数f(x)=ax^2+bx+c(a 2020-07-26 …
设函数f(x)=lnx+m/x,m∈R(1)当m=e(e为自然对数的底数时),求f(x)的极小值设 2020-07-26 …
若函数f(x)在R上可导,且f(x)>f'(x),当a>b时,下列不等式成立的是A.e^af(若函 2020-07-29 …
已知集合M={f(x)|f(-x)=f(x),x∈R};N={f(x)|f(-x)=-f(x),x 2020-07-30 …
f(x)是定义在R上的函数满足f(x)+f(x-1)=1.f(x)是定义在R上的函数满足f(x)+f 2020-11-19 …
定义在R+上的函数f(x),对于任意的m,n∈R+,都有f(mn)=f(m)+f(n)成立,当x>1 2020-12-03 …