早教吧作业答案频道 -->数学-->
如图,在四边形ABCD中,AD∥BC,E为CD的中点,连接AE、BE,BE⊥AE,延长AE交BC的延长线于点F.求证:(1)FC=AD;(2)AB=BC+AD.
题目详情
如图,在四边形ABCD中,AD∥BC,E为CD的中点,连接AE、BE,BE⊥AE,延长AE交BC的延长线于点F.
求证:(1)FC=AD;
(2)AB=BC+AD.

求证:(1)FC=AD;
(2)AB=BC+AD.

▼优质解答
答案和解析
证明:(1)∵AD∥BC(已知),
∴∠ADC=∠ECF(两直线平行,内错角相等),
∵E是CD的中点(已知),
∴DE=EC(中点的定义).
∵在△ADE与△FCE中,
,
∴△ADE≌△FCE(ASA),
∴FC=AD(全等三角形的性质).
(2)∵△ADE≌△FCE,
∴AE=EF,AD=CF(全等三角形的对应边相等),
∴BE是线段AF的垂直平分线,
∴AB=BF=BC+CF,
∵AD=CF(已证),
∴AB=BC+AD(等量代换).
∴∠ADC=∠ECF(两直线平行,内错角相等),
∵E是CD的中点(已知),
∴DE=EC(中点的定义).
∵在△ADE与△FCE中,
|
∴△ADE≌△FCE(ASA),
∴FC=AD(全等三角形的性质).
(2)∵△ADE≌△FCE,
∴AE=EF,AD=CF(全等三角形的对应边相等),
∴BE是线段AF的垂直平分线,
∴AB=BF=BC+CF,
∵AD=CF(已证),
∴AB=BC+AD(等量代换).
看了 如图,在四边形ABCD中,A...的网友还看了以下:
)(1)如图1,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.求证:CE 2020-04-05 …
1.正方形ABCD,E为BD上一点,连接AE并延长交CD于点F,交BC延长线于G,求证AE²=EF 2020-04-27 …
在菱形ABCD中,E是AD的中点,EF⊥AC,F是BC延长线上的一点,垂足为M,EF交AB于点P, 2020-05-16 …
在正方形abcd中,e为cd边上的一点,f为cd边上一点,f为bc延长线上一点,ce=cf,角fd 2020-05-16 …
如图,已知正方形ABCD,E是AB延长线上一点,F是DC延长线上一点,连接BF、EF,恰有BF=E 2020-06-20 …
已知直角梯形ABCD的四条边长分别为AB=2,BC=CD=10,AD=6,过B、D两点作圆,与BA 2020-07-09 …
已知三角形ABC,D是BC延长线上的点,F是AB延长线上的点,角ACD的平分线叫BA的延长线于E, 2020-07-11 …
如图,四边形ABCD中,AD∥BC,DE平分∠ADB,∠BDC=∠BCD.(1)求证:∠1+∠2= 2020-07-20 …
1在三角形ABC中D是AB上一点F是BC延长线上一点且AD=CF连接DF与AC相交于点EDG平行于B 2020-11-02 …
菱形ABCD的对角线BD的长等于边长.E为AD上任意一点,CE、BA的延长线交于F,BE的如图,菱形 2020-12-01 …