早教吧
育儿知识
作业答案
考试题库
百科
知识分享
创建时间
资源类别
相关度排序
共找到 139 与P为双曲线C上一点 相关的结果,耗时64 ms
设F1,F2是双曲线的两个焦点,P是C上一点,若|PF1|+|PF2|=6a,且△PF1F2的最小内角为30°,则C的离心率为()A.B.C.D.
数学
已知点F是双曲线C:x^2/a^2-y^2/b^2=1(a>0,b>0)的左焦点P为右支上一点直线PF与圆x^2+y^2=a^2相切于点E已知点F是双曲线C:x^2/a^2-y^2/b^2=1(a>0,b>0)的左焦点P为右支上一点直线PF与圆x^2+y^2=a^2相切
数学
2相切于点E 若向量PF=2
双曲线x^2/9-y^2/16=1的左右焦点分别为F1,F2.P为C的右支上一点且PF2的绝对值=F1F2的绝对值,求三角形PF1F2的面积
数学
已知点P为双曲线=1(a>0,b>0)右支上一点,F1,F2分别为双曲线的左右焦点,且|F1F2|=,I为三角形PF1F2的内心,若S=S+λS△成立,则λ的值为()A.B.C.D.
数学
设P是双曲线C:x2a2-y2b2=1(a>0,b>0)右支上的任意一点,已知A(a,b),B(a,-b),若OP=λOA+μOB(O为坐标原点),则λ2+μ2的最小值为()A.14abB.14C.12abD.12
数学
设双曲线C:(b>a>0)的左、右焦点分别为F1,F2。若在双曲线的右支上存在一点P,使得|PF1|=3|PF2|,则双曲线C的离心率e的取值范围为[]A、(1,2]B、C、D、(1,2
数学
双曲线x2-y2=1的左焦点为F,点P是双曲线左支上位于x轴上方的任一点,则直线PF的斜率的取值范围是()A.(-∞,0]∪[1,+∞)B.(-∞,0)∪(1,+∞)C.(-∞,-1)∪[1,+∞)D.(-
其他
若原点O和点F(-3,0)分别是双曲线x2a2−y2=1(a>0)的中心和左焦点,点P为双曲线右支上的任意一点,则OP•FP的取值范围为()A.[8+62,+∞)B.[-3,+∞)C.[-18,+∞)D.[18,+∞)
其他
已知双曲线C:x2a2-y2b2=1(a>0,b>0)与椭圆x24+y23=1的焦点重合,离心率互为倒数,设F1,F2为双曲线C的左、右焦点,P为右支上任意一点,则|PF1|2|PF2|的最小值为()A.4B.8C.16D.32
数学
已知双曲线的中心在原点O,右焦点为F(c,0),P是双曲线右支上一点,且△OEP的面积为(Ⅰ)若点P的坐标为,求此双曲线的离心率;(Ⅱ)若,当取得最小值时,求此双曲线的方程.
数学
1
2
3
4
5
6
7
8
9
10
>
热门搜索: