早教吧作业答案频道 -->数学-->
已知椭圆C:x^2/a^2+y^2/b^2=1(a>b>0)的右顶点为A(1.0),过C1的焦点且垂直长轴的弦长为1~求椭圆C1的方程
题目详情
▼优质解答
答案和解析
1)所求的椭圆方程为
x^2+y^2/4=1
如图,
设 M(x1,y1),N(x2,y2),P(t,t^2+h)
则抛物线C2在点P处的切线斜率为 y'=2t
直线MN的方程为:
y=-t^2+2tx+h
将上式代入椭圆C1的方程中,得
4x^2+(2tx-t^2+h)^2=4
化简:
4(1+t^2)x^2-4t(t^2-h)x+(t^2-h)^2=4 ①
因为直线MN与椭圆C1有两个不同的交点,
所以①式中的
△>0
16[-t^4+2(h+2)t^2-h^2+4]>0 ②
设线段MN的中点的横坐标是x3 ,则
x3=(x1+x2)/2=t(t^2-h)/2(1+t^2)
设线段PA的中点的横坐标是x4 ,则
x4=(t+1)/2
由题意,得
x3=x4
即:
t^2+(1+h)t+1=0
△>0 解不等式得:
h>=1 或 k>=-3
当h
x^2+y^2/4=1
如图,
设 M(x1,y1),N(x2,y2),P(t,t^2+h)
则抛物线C2在点P处的切线斜率为 y'=2t
直线MN的方程为:
y=-t^2+2tx+h
将上式代入椭圆C1的方程中,得
4x^2+(2tx-t^2+h)^2=4
化简:
4(1+t^2)x^2-4t(t^2-h)x+(t^2-h)^2=4 ①
因为直线MN与椭圆C1有两个不同的交点,
所以①式中的
△>0
16[-t^4+2(h+2)t^2-h^2+4]>0 ②
设线段MN的中点的横坐标是x3 ,则
x3=(x1+x2)/2=t(t^2-h)/2(1+t^2)
设线段PA的中点的横坐标是x4 ,则
x4=(t+1)/2
由题意,得
x3=x4
即:
t^2+(1+h)t+1=0
△>0 解不等式得:
h>=1 或 k>=-3
当h
看了 已知椭圆C:x^2/a^2+...的网友还看了以下:
已知中心在原点"焦点在X轴上的椭圆C的离心率e=二分之一"直线l1:x+2y-4=0是椭圆C的切线 2020-05-13 …
已知中心在坐标原点,且焦点在x轴上的椭圆C经过点M(1-3/2),点M到椭圆C的两个焦距的和为41 2020-05-15 …
已知焦距为4的椭圆C:x^2/a^2+y^2/b^2=1(a>b>0),F2为椭圆C的右焦点,AB 2020-05-15 …
AB是圆O的直径C是圆上的点,PA垂直圆所在平面,AE垂直PB,AF垂直PC.证:面AEF垂直面P 2020-05-16 …
如图,F是中心在原点、焦点在x轴上的椭圆C的右焦点,直线l:x=4是椭圆C的右准线,F到直线l的距 2020-06-21 …
AB是圆O的直径,C是圆上一动点(不与A、B重合),过点C作CD⊥AB交圆O于D,交AB于F,∠O 2020-07-31 …
过点(1,0)的直线l与中心在原点,焦点在x轴上,且离心率为二分之根号2的椭圆C交于A,B两点,直 2020-07-31 …
中心在原点,焦点在x轴上的椭圆C的焦距为2,两准线间的距离为10.设A(5,0),过点A作直线l交 2020-07-31 …
1.如图,AB为圆O的直径C为圆O上的一点,AD和过点C的切线互相垂直,垂足为D,求证:AC平分∠ 2020-08-01 …
AB是圆O的直径,C是圆上一动点,C点不与A、B点重合,过C点做直径AB的垂线,交圆于点D,角OCD 2021-01-17 …