早教吧作业答案频道 -->数学-->
在三角形ABC中,角ABC对边分别为abc,且满足(2a-c)cosB=bcosC
题目详情
在三角形ABC中,角ABC对边分别为abc,且满足(2a-c)cosB=bcosC
▼优质解答
答案和解析
先证明三角形中的一个等式:b*cosC+c*cosB=a.
由余弦定理:
cosC=(a^2+b^2-c^2)/(2ab),cosB=(a^2+c^2-b^2)/(2ac),所以
bcosC+ccosB
=b*(a^2+b^2-c^2)/(2ab)+c*(a^2+c^2-b^2)/(2ac)
=(a^2+b^2-c^2)/(2a)+(a^2+c^2-b^2)/(2a)
=(2a^2)/(2a)
=a
即有 bcosC+ccosB=a 成立.
由题意:(2a-c)cosB=bcosC,所以 2acosB=ccosB+bcosC=a,从而 cosB=1/2.
由于B是三角形内角,所以有角B=60度.
综上,角B=60度.
由余弦定理:
cosC=(a^2+b^2-c^2)/(2ab),cosB=(a^2+c^2-b^2)/(2ac),所以
bcosC+ccosB
=b*(a^2+b^2-c^2)/(2ab)+c*(a^2+c^2-b^2)/(2ac)
=(a^2+b^2-c^2)/(2a)+(a^2+c^2-b^2)/(2a)
=(2a^2)/(2a)
=a
即有 bcosC+ccosB=a 成立.
由题意:(2a-c)cosB=bcosC,所以 2acosB=ccosB+bcosC=a,从而 cosB=1/2.
由于B是三角形内角,所以有角B=60度.
综上,角B=60度.
看了 在三角形ABC中,角ABC对...的网友还看了以下:
酸、碱、盐专题练习90、有三种金属A、B、C经实验证明,B能从C的硝酸盐溶液中置换出C,B、A与盐 2020-05-13 …
已知三角形ABC外接圆半径为3,a,b,c 为三边,面积为a^2-(c-b)^2,sinC+sin 2020-05-13 …
1.log89=a,log35=b,用a,b表示lg22.log155*log1545+(log1 2020-05-13 …
在三角形ABC中,教A,B,C所对边分别为a,b,c,△ABC的外接圆半径R=根号3在三角形ABC 2020-08-01 …
三元五次轮换式(a+b+c)^5-(b+c-a)^5-(a+c-b)^5-(a+b-c)^5分解因 2020-08-02 …
三条不同直线的a,b,c,其中正确的命题个数是()(1)若a∥b,b∥c,则a∥c;(2)若a⊥b 2020-08-02 …
已知a,b,c是三角形ABC的三边,且满足a^2(b-c)-b^2(a-c)+c^2(a-b)=0 2020-08-03 …
设a、b、c表示三条直线,α、β表示两个平面,则下列命题中不正确的是()A.c⊥αα∥β⇒c⊥βB. 2020-11-02 …
已知abc为直角三角形的三边长,其中c为斜边,且c不等于1,讨论:log(c+b)a,log(c-b 2021-01-22 …
如图,图中的四边形都是正方形,三角形都是直角三角形,其中正方形的面积分别记为A、B、C、D,则它们之 2021-01-22 …