早教吧作业答案频道 -->数学-->
已知数列{an}的前n项和为Sn,且an=Sn*S(n-1)(n≥2,Sn≠0),a1=2/9求证:{1/Sn}为等差数列求满足an>a(n-1)的自然数n的集合请高手不吝赐教,急!
题目详情
已知数列{an}的前n项和为Sn,且an=Sn*S(n-1)(n≥2,Sn≠0),a1=2/9
求证:{1/Sn}为等差数列
求满足an>a(n-1)的自然数n的集合
请高手不吝赐教,急!
求证:{1/Sn}为等差数列
求满足an>a(n-1)的自然数n的集合
请高手不吝赐教,急!
▼优质解答
答案和解析
证明:
因为an=Sn*S(n-1)(n≥2,Sn≠0)
所以Sn-S(n-1)=Sn*S(n-1)(n≥2,Sn≠0)
因为Sn≠0,所以Sn*S(n-1)≠0
方程两边同时除以Sn*S(n-1),得:
1/S(n-1)-1/Sn=1,即1/Sn=1/S(n-1)-1(n≥2)
所以数列{1/Sn}是以9/2为首项,-1为公差的等差数列.
则1/Sn=1/S1+(n-1)d=9/2+(n-1)*(-1)=11/2-n
所以Sn=1/(11/2-n)=2/(11-2n),则S(n-1)=2/[11-2(n-1)]=2/(13-2n)
所以an=Sn-S(n-1)=2/(11-2n)-2/(13-2n)=4/[(2n-11)*(2n-13)](n≥2)
当n=1时,a1不符合an=4/[(2n-11)*(2n-13)]
当n=2时,a2=4/632时,an=4/[(2n-11)*(2n-13)]
由平方差公式:
(2n-11)*(2n-13)=[(2n-12)+1]*[(2n-12)-1]=[2(n-6)]^2-1=4*(n-6)^2-1
则an=4/[4*(n-6)^2-1]
设f(n)=4*(n-6)^2-1.
当20,f(n)依次递减
所以an=4/[4*(n-6)^2-1]依次递増,符合an>a(n-1)且a5=4/3;
当n=6时,a6=-4a6,符合题意;
当n>7时,4*(n-6)^2-1>0且f(n)依次递増,则an依次递减,不符合题意;
所以综上所述,求满足an>a(n-1)的自然数n的集合是{3,4,5,7}.
因为an=Sn*S(n-1)(n≥2,Sn≠0)
所以Sn-S(n-1)=Sn*S(n-1)(n≥2,Sn≠0)
因为Sn≠0,所以Sn*S(n-1)≠0
方程两边同时除以Sn*S(n-1),得:
1/S(n-1)-1/Sn=1,即1/Sn=1/S(n-1)-1(n≥2)
所以数列{1/Sn}是以9/2为首项,-1为公差的等差数列.
则1/Sn=1/S1+(n-1)d=9/2+(n-1)*(-1)=11/2-n
所以Sn=1/(11/2-n)=2/(11-2n),则S(n-1)=2/[11-2(n-1)]=2/(13-2n)
所以an=Sn-S(n-1)=2/(11-2n)-2/(13-2n)=4/[(2n-11)*(2n-13)](n≥2)
当n=1时,a1不符合an=4/[(2n-11)*(2n-13)]
当n=2时,a2=4/632时,an=4/[(2n-11)*(2n-13)]
由平方差公式:
(2n-11)*(2n-13)=[(2n-12)+1]*[(2n-12)-1]=[2(n-6)]^2-1=4*(n-6)^2-1
则an=4/[4*(n-6)^2-1]
设f(n)=4*(n-6)^2-1.
当20,f(n)依次递减
所以an=4/[4*(n-6)^2-1]依次递増,符合an>a(n-1)且a5=4/3;
当n=6时,a6=-4a6,符合题意;
当n>7时,4*(n-6)^2-1>0且f(n)依次递増,则an依次递减,不符合题意;
所以综上所述,求满足an>a(n-1)的自然数n的集合是{3,4,5,7}.
看了 已知数列{an}的前n项和为...的网友还看了以下:
1.若数列{An}的前n项和Sn=2n的平方+5n-2,则此数列一定是什么数列?A.递增B.等差C 2020-04-09 …
已知数列{An}的通项An=(n+1)(10/11)^n,试问该数列有没有最大项,若有,求最大项和 2020-04-27 …
1.数列1/2,3/4,5/8,7/16,9/32,……的前n项和Sn=2.在等比数列{an}中, 2020-05-13 …
数列{an}的前n项和为Sn,若对于任意的正整数n都有Sn=2an-3n.(9)设en=an+3, 2020-05-13 …
已知数列{an}的前n项和Sn=-1/2n^2+kn,k∈N*,且Sn的最大值为81)确定常数k, 2020-05-13 …
数列的前n项和Sn=10n-n^2,使得数列Sn最大的序号的n的值为Sn=-(n-5)^2+25, 2020-05-14 …
关于数列的几道题啊、若数列{an}的通项an=(2n-1)3n(n是n次方),求此数列的前n项和S 2020-05-17 …
设数列{an}为等差数列,a3=5,a5=9,数列{bn}的前n项和为Sn,且Sn=2[1-(½) 2020-07-09 …
数列(an)的前N项和为Sn,已知a1=1/2,Sn=n*an-n(n-1)数列(an)的前N项和 2020-08-01 …
已知等比数列{2^(n-1)*an}的前n项和sn=9-6n已知等比数列{an*2^(n-1)}的前 2020-11-02 …