早教吧作业答案频道 -->其他-->
求教一道微积分导数题目f(x)和g(x)在R上都有定义,且1.f(x+y)=f(x)g(y)+f(y)g(x)2.f(0)=0,g(0)=1,f(x)在0处的导数为1,g(x)在0处的导数为0.求证f(x)一切x可导,并求其导数
题目详情
求教一道微积分导数题目
f(x)和g(x)在R上都有定义,且1.f(x+y)=f(x)g(y)+f(y)g(x) 2.f(0)=0,g(0)=1,f(x)在0处的导数为1,g(x) 在0处的导数为0.
求证f(x)一切x可导,并求其导数
f(x)和g(x)在R上都有定义,且1.f(x+y)=f(x)g(y)+f(y)g(x) 2.f(0)=0,g(0)=1,f(x)在0处的导数为1,g(x) 在0处的导数为0.
求证f(x)一切x可导,并求其导数
▼优质解答
答案和解析
因为f(0)=0,f(x)在0处的导数为1,
所以 当△x无限趋近于0时 [f(0+△x)-f(0)]/△x=f(△x)/△x的极限等于1
因为 g(0)=1,g(x) 在0处的导数为0.
所以 当△x无限趋近于0时g(0+△x)-g(0)=g(△x)-1的极限等于0,g(△x)的极限等于1
任取实数x,当△x无限趋近于0时,
△y/△x=[f(x+△x)-f(x)]/△x=[f(x)g(△x)+f(△x)g(x)-f(x)]/△x={f(x)[g(△x)-1]+f(△x)g(x)}/△x
无限趋近于g(x)f(△x)/△x无限趋近于g(x)
即当△x无限趋近于0时,△y/△x的极限等于g(x),所以
f(x)对一切x可导,且导数为g(x)
快30年了,还有点印象
所以 当△x无限趋近于0时 [f(0+△x)-f(0)]/△x=f(△x)/△x的极限等于1
因为 g(0)=1,g(x) 在0处的导数为0.
所以 当△x无限趋近于0时g(0+△x)-g(0)=g(△x)-1的极限等于0,g(△x)的极限等于1
任取实数x,当△x无限趋近于0时,
△y/△x=[f(x+△x)-f(x)]/△x=[f(x)g(△x)+f(△x)g(x)-f(x)]/△x={f(x)[g(△x)-1]+f(△x)g(x)}/△x
无限趋近于g(x)f(△x)/△x无限趋近于g(x)
即当△x无限趋近于0时,△y/△x的极限等于g(x),所以
f(x)对一切x可导,且导数为g(x)
快30年了,还有点印象
看了 求教一道微积分导数题目f(x...的网友还看了以下:
设f(x,y)=(x2+y)sin(1x2+y2),(x,y)≠(0,0)0,(x,y)=(0,0 2020-05-13 …
函数问题f(x)二阶连续可导,f(0)=f(1)=0,f(x)在区间[0,1]上的最小函数问题f( 2020-05-14 …
证明:f(x,y)=|xy|在点(0,0)处连续,fx(0,0)与fy(0,0)存在,在(0,0) 2020-05-14 …
SPSS方差分析时,最后结果的两组数据完全一摸一样.这样能用吗这个数据.sig值都是小于0.05的 2020-05-20 …
已知命题p:"如果函数y=f(x)在(a,b)内可导,在[a,b]上连续(图像不间断),且f(a) 2020-06-04 …
多项式3kx2+(6k-1)x+3k+1(k≠0)可以在实数范围内分解因式,那么k的取值范围 2020-06-06 …
一道大一数学题,急等!设f(x)有二阶连续导数,且f(0)=0,试证函数g(x)可导,且g'(x) 2020-06-06 …
导数相关的题.1.当K取何值时,分段函数:x不等于0时,f(x)=x的k次方乘以sin(1/x), 2020-06-11 …
不可导的点!y=x^2/xy=x1.这2个函数的导数是不一样的吧?因为y=x^2/x,x不能等于0 2020-06-18 …
高等数学问题设f(0)=0则f(x)在点x=0可导的充要条件是:其中有个选项是limf(h-sin 2020-06-18 …