早教吧作业答案频道 -->其他-->
函数问题f(x)二阶连续可导,f(0)=f(1)=0,f(x)在区间[0,1]上的最小函数问题f(x)二阶连续可导,f(0)=f(1)=0,f(x)在区间[0,1]上的最小值为-1,证明:maxf"(x)≥8.
题目详情
函数问题 f(x)二阶连续可导,f(0)=f(1)=0,f(x)在区间[0,1]上的最小
函数问题
f(x)二阶连续可导,f(0)=f(1)=0,f(x)在区间[0,1]上的最小值为-1,证明:max f"(x)≥8.
函数问题
f(x)二阶连续可导,f(0)=f(1)=0,f(x)在区间[0,1]上的最小值为-1,证明:max f"(x)≥8.
▼优质解答
答案和解析
证明一:设c是f(x)在[0,1]上的一个最小值点,则0 构造辅助函数
g(x)=f(x)+4x(1-x),则g(x)在[0,1]上二阶可导,且
g'(x)=f'(x)+4-8x.
g''(x)=f''(x)-8.
f''(x)=g''(x)+8.
g(0)=g(1)=0.
g(c)=f(c)+4x(1-x)=-1+4x(1-x)=-(2x-1)^2≤0.
假设在(0,1)上g''(x)<0恒成立,则在(0,1)上g'(x)严格递减。分两种情况讨论:
1.若g'(c)≥0,则在(0,c)上g'(c)>0恒成立。因此g(x)在[0,c]上严格递增,从而
g(c)>g(0)=0.
这与g(c)≤0矛盾。
2.若g'(c)<0,则在(c,1)上g'(c)<0恒成立。因此g(x)在[c,1]上严格递减,从而
g(c)>g(1)=0.
这与g(c)≤0矛盾。
也就是说,反设不成立,即存在t∈(0,1)使得f''(t)≥8。
证明二:由条件f(0)=f(1)=0,,根据罗尔定理,存在ξ∈(0,1),满足f'(ξ)=0。
令F(x) = (1-x)²f'(x),则F(η) = F(1) = 0
再次运用它罗尔定理 存在ξ∈(η,1),使F'(ξ)=0,即(1-ξ)²f''(ξ)-2(1-ξ)f'(ξ)=0
由于ξ<1,所以1-ξ不等于0,所以(1-ξ)f''(ξ)-2f'(ξ)=0,即f''(ξ)=2f'(ξ)/(1-ξ).
证毕
g(x)=f(x)+4x(1-x),则g(x)在[0,1]上二阶可导,且
g'(x)=f'(x)+4-8x.
g''(x)=f''(x)-8.
f''(x)=g''(x)+8.
g(0)=g(1)=0.
g(c)=f(c)+4x(1-x)=-1+4x(1-x)=-(2x-1)^2≤0.
假设在(0,1)上g''(x)<0恒成立,则在(0,1)上g'(x)严格递减。分两种情况讨论:
1.若g'(c)≥0,则在(0,c)上g'(c)>0恒成立。因此g(x)在[0,c]上严格递增,从而
g(c)>g(0)=0.
这与g(c)≤0矛盾。
2.若g'(c)<0,则在(c,1)上g'(c)<0恒成立。因此g(x)在[c,1]上严格递减,从而
g(c)>g(1)=0.
这与g(c)≤0矛盾。
也就是说,反设不成立,即存在t∈(0,1)使得f''(t)≥8。
证明二:由条件f(0)=f(1)=0,,根据罗尔定理,存在ξ∈(0,1),满足f'(ξ)=0。
令F(x) = (1-x)²f'(x),则F(η) = F(1) = 0
再次运用它罗尔定理 存在ξ∈(η,1),使F'(ξ)=0,即(1-ξ)²f''(ξ)-2(1-ξ)f'(ξ)=0
由于ξ<1,所以1-ξ不等于0,所以(1-ξ)f''(ξ)-2f'(ξ)=0,即f''(ξ)=2f'(ξ)/(1-ξ).
证毕
看了 函数问题f(x)二阶连续可导...的网友还看了以下:
非奇非偶函数对称区间上积分可能为0的例子,是连续函数另外除y=0既奇又偶这个特例外,关于奇偶函数的 2020-04-06 …
在什么条件下,函数f(x)=|(x^a)*sin(1/x)(x不等于0)|0(x等于0)(1)在点 2020-06-12 …
高数,>>函数,极限,连续..1,求间断点,断点属于哪一类?是可去间断点的,设法使其变成连续函数( 2020-06-27 …
1.初等函数在其定义域上都是可导的连续函数A.错误B.正确满分:7分2.设y=f(x)在区间[0, 2020-07-25 …
能具体解释如何用压缩映射定理吗(泛函分析)证明:存在闭区间[0,1]上的连续函数x(t),使得能具 2020-07-29 …
(泛函分析)证明:存在闭区间[0,1]上的连续函数x(t),使得x(t)=sinx(t)-a(t) 2020-07-29 …
连续函数!设f(x)={sinbx/b,x≠0a,x=0(a,b为常数)为连续函数,则a等于多少? 2020-07-30 …
、设f(x)是区间(0,+∞)内单调减少且非负的连续函数,.证明数列{an}的极限存在.an=∑. 2020-07-31 …
这有一句话是:有界区间的有界函数未必是一致连续函数如f=sin(1/x),x属于0到1的开区间.但 2020-08-01 …
以下哪组条件可以保证f(1)是区间{0,2}上连续函数f(x)的最大值?()A.f'(1)=0B.f 2021-02-13 …