早教吧作业答案频道 -->其他-->
函数问题f(x)二阶连续可导,f(0)=f(1)=0,f(x)在区间[0,1]上的最小函数问题f(x)二阶连续可导,f(0)=f(1)=0,f(x)在区间[0,1]上的最小值为-1,证明:maxf"(x)≥8.
题目详情
函数问题 f(x)二阶连续可导,f(0)=f(1)=0,f(x)在区间[0,1]上的最小
函数问题
f(x)二阶连续可导,f(0)=f(1)=0,f(x)在区间[0,1]上的最小值为-1,证明:max f"(x)≥8.
函数问题
f(x)二阶连续可导,f(0)=f(1)=0,f(x)在区间[0,1]上的最小值为-1,证明:max f"(x)≥8.
▼优质解答
答案和解析
证明一:设c是f(x)在[0,1]上的一个最小值点,则0 构造辅助函数
g(x)=f(x)+4x(1-x),则g(x)在[0,1]上二阶可导,且
g'(x)=f'(x)+4-8x.
g''(x)=f''(x)-8.
f''(x)=g''(x)+8.
g(0)=g(1)=0.
g(c)=f(c)+4x(1-x)=-1+4x(1-x)=-(2x-1)^2≤0.
假设在(0,1)上g''(x)<0恒成立,则在(0,1)上g'(x)严格递减。分两种情况讨论:
1.若g'(c)≥0,则在(0,c)上g'(c)>0恒成立。因此g(x)在[0,c]上严格递增,从而
g(c)>g(0)=0.
这与g(c)≤0矛盾。
2.若g'(c)<0,则在(c,1)上g'(c)<0恒成立。因此g(x)在[c,1]上严格递减,从而
g(c)>g(1)=0.
这与g(c)≤0矛盾。
也就是说,反设不成立,即存在t∈(0,1)使得f''(t)≥8。
证明二:由条件f(0)=f(1)=0,,根据罗尔定理,存在ξ∈(0,1),满足f'(ξ)=0。
令F(x) = (1-x)²f'(x),则F(η) = F(1) = 0
再次运用它罗尔定理 存在ξ∈(η,1),使F'(ξ)=0,即(1-ξ)²f''(ξ)-2(1-ξ)f'(ξ)=0
由于ξ<1,所以1-ξ不等于0,所以(1-ξ)f''(ξ)-2f'(ξ)=0,即f''(ξ)=2f'(ξ)/(1-ξ).
证毕
g(x)=f(x)+4x(1-x),则g(x)在[0,1]上二阶可导,且
g'(x)=f'(x)+4-8x.
g''(x)=f''(x)-8.
f''(x)=g''(x)+8.
g(0)=g(1)=0.
g(c)=f(c)+4x(1-x)=-1+4x(1-x)=-(2x-1)^2≤0.
假设在(0,1)上g''(x)<0恒成立,则在(0,1)上g'(x)严格递减。分两种情况讨论:
1.若g'(c)≥0,则在(0,c)上g'(c)>0恒成立。因此g(x)在[0,c]上严格递增,从而
g(c)>g(0)=0.
这与g(c)≤0矛盾。
2.若g'(c)<0,则在(c,1)上g'(c)<0恒成立。因此g(x)在[c,1]上严格递减,从而
g(c)>g(1)=0.
这与g(c)≤0矛盾。
也就是说,反设不成立,即存在t∈(0,1)使得f''(t)≥8。
证明二:由条件f(0)=f(1)=0,,根据罗尔定理,存在ξ∈(0,1),满足f'(ξ)=0。
令F(x) = (1-x)²f'(x),则F(η) = F(1) = 0
再次运用它罗尔定理 存在ξ∈(η,1),使F'(ξ)=0,即(1-ξ)²f''(ξ)-2(1-ξ)f'(ξ)=0
由于ξ<1,所以1-ξ不等于0,所以(1-ξ)f''(ξ)-2f'(ξ)=0,即f''(ξ)=2f'(ξ)/(1-ξ).
证毕
看了 函数问题f(x)二阶连续可导...的网友还看了以下:
请问f(—x)加2f(x)等于x的平方,求f(x)的解析式这道题怎么解,能...请问f(—x)加2 2020-04-26 …
1.jm2.qestion3.cmic4.stoe5.wat6.whoeA.oB.rC.sD.nE 2020-05-14 …
周期函数问题f(x)=-f(x+1)=f((x+1)+1)=f(x+2)“f(x)=-f(x+1) 2020-05-14 …
急,三角形ABC中,角A为直角,AB上点E与AC上点F的连线EF平行...急,三角形ABC中,角A 2020-06-27 …
斐波那契数列解法中的一个问题求解?这是解法裴波那契数列:1,1,2,3,5,8,13,.裴波那契数 2020-07-23 …
二阶导数问题f(x)在c点导数为f'(c),若f'(c)=0,f''(c)≠0,则c点为f(x)极 2020-07-31 …
关于函数图象关于某点成中心对称的问题.定义在R上的函数的图象关于点(-3/4,0)成中心对称,且对 2020-08-02 …
若f(2x+1)=2x^2-3x+1并且求此类题目简单、快捷、一定对的方法.另外.如果问f(x+1) 2020-11-22 …
1)设f(x)在[a,b]上可微,且f(a)=f(b)=0,证明:在(a,b)内存在一点ξ,使f'( 2020-12-28 …
一致连续的问题f在整个实数轴连续,问,在无穷远点导函数的极限是否存在不好意思,改成f在整个实数轴一致 2021-01-13 …